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Abstract 

This paper presents a novel way of estimating the 

apnoea-hypopnoea index (AHI) using craniofacial 

photographs.  We compared the correlation and 

classification performance of the photograph-determined 

AHI against expert-determined AHI for a number of 

selected measurement sets. Our best performing system 

used five craniofacial measurements selected from 71 

manual craniofacial phenotype features, which had been 

determined from frontal and profile photographs of a 

patient’s head and neck. The measurements were 

processed with a Support Vector Machine Regression 

algorithm to estimate AHI. The best features included 

face width, mandibular length, binocular width, cranial 

base area, and criocomental space distance. A database 

of 114 subjects with OSA (AHI 10/h) and 66 controls 

(AHI <10/h) was used for algorithm development and 

testing. Leave-one-record-out cross-validation was used 

to estimate performance. The Pearson correlation was 

0.52 for the AHI estimation. Classification performed 

using an AHI threshold of 10 events per hour, resulted in 

an estimated accuracy of the algorithm of 73.3% with an 

area under the ROC of 0.78.

1. Introduction

Obstructive Sleep Apnoea (OSA) is a widespread sleep 
related respiratory disorder involving consecutive 
blockage of the upper airway. Although, it can lead to 
serious health issues such as cardiovascular disorders, 
about 80% of OSA cases are undiagnosed [1]. The current 
OSA diagnosis tools are invasive and expensive. Thus, 
there is a trend toward developing reliable non-invasive 
OSA detection methods.  

It has been reported in the previous imaging studies 
that anatomical and functional abnormalities of the upper 
airway and craniofacial morphology could be significant 
factors in OSA detection. It has been shown that 
craniofacial abnormalities can lead to upper airway 

collapsibility which can result in OSA. Hence, in majority 
of patients, a combination of imaging methods illustrating 
craniofacial abnormalities and measures of obesity could 
be utilized as a tool for OSA recognition and measuring 
the OSA severity. The current available craniofacial 
evaluation tests and imaging including cephalometry, 
computed tomography (CT) and magnetic resonance 
filtering (MRI) are expensive and invasive. Therefore, 
photogrammetry has been widely used as an interesting 
OSA diagnosis tool due to its non-invasive, accessible and 
quantifiable nature. Recent studies investigated 
quantitative photographic analysis of the craniofacial 
morphological phenotype of OSA patients and normal 
subjects [2]–[4]. A few craniofacial photographic 
measurements have been discovered with the ability of 
detecting OSA [3].   

This study looks at the craniofacial photographic 

measurements, as a powerful and non-invasive tool to 

predict OSA severity. It uses the estimated apnoea-

hypopnoea index (AHI) as a surrogate measure to classify 

subjects with and without OSA. The benefits of 

photogrammetry for OSA diagnosis over the standard in-

lab overnight polysomnogram test include: independence 

of time of day for the administering of the test, labour 

inexpensive, cost effective and minimally invasive. These 

benefits could also lead to its application in developing 

countries where expensive diagnostic tools may not be 

readily available. 

2. Database

The landmark features used in our study are selected 
from manual photographic measurements representing the 
dimension of various craniofacial regions including face, 
head, neck, eyes, nose, mandible and maxilla as described 
in Table 1 and Fig. 1. Measurements are derived from the 
study conducted by Lee et.al [2] where subjects were 
referred for polysomnography to a university teaching 
hospital for the initial investigation of OSA. A total of 180 
subjects were included in the analysis where 114 subjects 
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had OSA (AHI  >=10/h) and 66 were selected as controls 
(AHI <10/h) [2]. 

Before the photographs were taken, certain landmarks 
were identified on the subjects and indicated with a white 
tape. A calibration washer of known size was taped to the 
forehead and to the cheek. It was used to calibrate 
measurements determined from the photograph. Frontal 
and profile photographs of the head and neck were then 
obtained with a single-lens reflex digital camera (D70 with 
18-70mm lens and external flash unit SB-29s; Nikon 
Corp., Japan) using a standardised setup. The subjects then 
underwent a diagnostic polysomnography (PSG) overnight 
test.  Following the study, PSG scoring was performed by 
experienced accredited sleep technologists Sleep staging 
was performed using standard definitions. Apnoea was 
defined as complete airflow cessation for greater than 10 
seconds with oxygen desaturation of at least 3% and/or 
associated with arousal. Hypopnoea was defined as a 
reduction in amplitude of airflow or chest/abdominal wall 
movement greater than 50% of the baseline measurement 
for more than 10 seconds with an accompanying oxygen 
desaturation of at least 3%, and/or associated with 
arousals. AHI was calculated as the total number of 
apnoeas and hypopnoeas per hour of sleep. 

3. Signal Processing

Seventy one features for each of the 180 photographs 
had previously been manually determined by an expert to 
support the studies described in [2,3,4]. 

Our first step was to normalize the features into the 
interval 0 to 1 by scaling the mean and the variance. The 
features were then ranked using a Support Vector Machine 
Reverse Elimination Feature (SVM-REF) algorithm [5] 
and the optimal number of ranked features selected. The 
result of this algorithm was five selected features. The 
support vector regression (SVR) algorithm was then used 

to map the input features to an estimated AHI. We 
describe SVR in the section 3.2.  

Sections 4 and 5 provide the details of the experiments, 
the results, and the conclusions.  

3.1. Craniofacial Photographic Features 

Three systems were considered as the photographic 

features for AHI estimation.  

The first system uses the five most discriminative 

features from 71 craniofacial based on the SVM-REF 

technique [5]. These features are face width, mandibular 

length 2, binocular width, cranial base area (ax), and 

criocomental space distance. 

The second and third systems use the selected 

calibrated and uncalibrated features from the study by 

Lee.et.al [3]. 

Lee’s calibrated system used a logistic regression 

model processing the following calibrated photographic 

measurements: face width, eye width, cervicomental 

angle, and mandibular length. It obtained 76.1% of 

accuracy, sensitivity of 86%, specificity of 59.1% and 

area under curve of ROC of 0.82 for discriminanting 

sleep apnoea using an AHI threshold of 10. This system 

resulted in the highest rate of true classification with the 

lowest number of variables [3]. 

Lee’s uncalibrated system also used a logistic 

regression model processing the following uncalibrated 

photographic measurements: face width-eye width ratio, 

cervicomental angle and mandibular-nasion angle 2. This 

model achieved an accuracy of 71.1% with sensitivity of 

80.7%, specificity of 54.5% and area under  ROC curve 

of 0.80 [3]. 

The measurements used in Lee’s and our system are 

illustrated in Table 1 and Figure 1.  

Figure 1. Photographic Landmarks – Profile and Frontal View 

Table 1. Examples of  71 Craniofacial 

photogrammetry features [2] 

Feature Landmarks 

Biocular width exl-exr 

Cervicomental angle np-cer-me 

Cranial base area 1(ax) tl-exl-exr-tr 

Cricomental space distance cer-cr-me 

Eye width exl-enl 

Face width tl-tr 

Mandibular length 2 gn-go 

Mandibular nasion angle 2 go-n-me 

 

 

  



A fourth system using clinical features was also 

considered. The clinical features were age, BMI, neck 

circumference, abdominal girth, and hip girth.  

3.2.  Support Vector Regression 

SVM uses an  -insensitive loss function to solve 

regression problems. Support Vector Regression (SVR) 

attempts to find a continuous function where training 

points lie within   distance of the target values. The   

factor is chosen to balance the margin of error and 

generalisibility of the prediction function to unseen data 

[6, 7]. LibSVM has been used to calculate the regression 

measurement via support vectors [7]. The SVR models 

the regression directly. Similar to support vector 

classifiers [8], a key part of SVRs is producing a 

measurement of similarity using a kernel function. The 

basic concept of SVR is to discover a function     
which map the input training data closest to the targets    

in a way to obtain the most flat function [6,7]. A simple 

linear function      is illustrated as follows, 

                                              

where the    are the ideal outputs,   is a learned 

constant and the weight vector   is a linear combination 

of training points. In order to obtain flatness, smaller 

weights,  , are found through minimizing its norm, 

‖ ‖     , through a convex optimization problem, 
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Equation 2 is augmented by introducing a region for 

the support vectors. This is created by using the negligent 

variables,     ,   
  with a constant cost function    , 

which represents the cost between the flatness of function 
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Using Lagrange multipliers in solving the dual 

problem leads to the following  function 
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     The approximation function is 

obtained by solving (4) using 
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The support vector regression is estimated as above in 

(3) [6]. 

3.3.  Parameter Optimisation 

LibSVM was used for training and testing of the 

proposed model [7]. A grid search was utilized for 

optimizing the SVR and RBF parameters [9]. It employed 

a 5-fold cross validation of comprehensive searching of 

the subset of hyperplanes and hyper-parameters to 

optimize regression performance [9]. 

Table 2. AHI estimation using craniofacial measures and 

clinical variables using RBF kernel. 

Feature set MAE CC 

Lee’s uncalibrated features 13.3 0.54 

Lee’s calibrated features 13.5 0.53 

5  SVM-REF  selected features 13.4 0.52 

5 clinical features 14.6 0.42 

Table 3. Classification Results of OSA detection using radial 

basis function kernel SVM 

Feature/ 

Performance 
Accuracy Sensitivity Specificity 

ROC 

AUC 

Uncalibrated 68.3 87.7 34.8 0.75 

Calibrated 72.22 89.47 42.42 0.77 

Selected 73.3 90.4 43.9 0.78 

Clinical 71.67 89.47 40.91 0.78 
Notes: Calibrated: Lee’s 4 calibrated features [3]; 5 Selected: SVM-REF 5 

selected features; Uncalibrated: Lee’s 3 uncalibrated features [3]; Clinical: 5 clinical 

features 

Figure 2. Scatter plot of predicted AHI versus true AHI for 5 

SVM-REF selected features. 

 

 

  



3.4.  Performance Measures 

Two measures were used to evaluate the performance 

of the model including Mean Absolute Error (MAE) of 

the estimated AHI measures and Pearson linear 

correlation coefficient (CC) between the predicted AHI 

and the expert determined AHI [7].  

Accuracy, sensitivity, specificity, and area under the 

curve for the receiver operator characteristic (AUC-ROC) 

were used to quantify classification performance.  

4. Results and Discussion

The results of AHI estimation using craniofacial 

measure and clinical variables using the RBF kernel are 

shown in Table 2 for the three sets of craniofacial 

photograph features and the clinical features. A scatter 

plot for the SVM-REF selected features is shown in 

Figure 2. The classification results are shown in Table 3. 

The results in Table 2 show that the three craniofacial 

feature sets achieved around 0.5 correlation with the 

expert determined AHI. The scatter plot for the SVM-

REF features shows while the AHI trend is correct there 

is a high degree of variability on an individual determined 

AHI point. Encouragingly, the system had low level of 

false negatives (see Fig. 2) indicating that the system may 

have potential utility as a screening device. This result 

was also seen in the high level of specificity 90.4% in 

Table 3. The clinical features resulted in a lower 

correlation of 0.42, demonstrating that the craniofacial 

photograph features had greater predicting power. 

Our classification results using a regression model are 

comparable to Lee’s result of 76.1% [4] but with the 

added ability of estimating the severity of sleep apnoea.  

While our system has a way to go before it is a 

clinically useful system, we’ve shown that a highly 

convenient, low cost, day-time test can be used to predict 

the severity of sleep apnoea. With further development, 

our system has potential as primary diagnostic tool to 

tackle the societal burden of undiagnosed sleep apnoea. 

Future work will look at restricting the feature pool to 

the set of measurements not requiring calibration (e.g. 

angles and relative distances) and choosing an optimal 

subset. This would remove the need to use the calibration 

washers used on the forehead and the cheek shown in Fig. 

1. Our selected landmarks can also serve as a baseline for

a fully automatic photographic analysis system for OSA 

detection, where the key craniofacial indicators are to be 

identified automatically using image processing 

algorithms. This could create the opportunity of using low 

cost, ubiquitous technology such as smart camera phones 

to perform the apnoea screening. 

5. Conclusion

This paper has presented a novel way of estimating the 

apnoea-hypopnoea index using craniofacial photographs. 

Five craniofacial measurements were selected from 71 

manual craniofacial phenotype features determined from 

frontal and profile photographs of a subject’s head. The 

measurements were processed with a Support Vector 

Machine Regression algorithm to estimate AHI. Using 

leave-one-record-out cross-validation the estimated 

accuracy of the algorithm was 73.3% with an area under 

ROC of 0.78. The correlation coefficient of the estimated 

AHI against the expert AHI was 0.52. 
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