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Abstract 

The automatic analysis of Heart Rate Variability in 
records of ambulatory electrocardiogram (AECG) 
requires the detection of irregular heartbeats which 
cannot be included in the analysis. This article presents a 
novel approach for detecting irregular beats using 
tensors and Support Vector Machines. 

After signal filtering, for each record of the database a 
third order tensor was constructed. Next, a rank-3 
Canonical Polyadic Decomposition (CPD) was applied. 
CPD yields three loading matrices corresponding to the 
modes space (channel), time course and heartbeats 
respectively. The heartbeat mode matrix was used as the 
input of a linear Support Vector Machine (SVM) 
classifier. The SVM was trained for classifying between 
irregular and normal heartbeats. The training set was 
randomly selected from the 2% of the patterns in each 
record. 

The classifiers show a global accuracy of 97.2%. The 
results suggest that this approach is a promising method 
for detecting irregular heartbeats. 

1. Introduction

In the last years, there has been an increasing interest 
in the study of the Heart Rate Variability (HRV) using the 
electrocardiogram (ECG). The HRV is modulated by both 
sympathetic and parasympathetic branches of the 
autonomic nervous system. HRV analysis during short (5 
minutes) and long (up to 24 hours) periods of time 
provides relevant information about certain diseases and 
dysfunctions of the cardiovascular and nervous systems 
[1]. 

The ambulatory ECG (AECG) or Holter monitoring is 
a medical test where the ECG is continuously monitored 
for a period of 24 to 48 hours. HRV analysis is valid if 

and only if each detected QRS complex belongs to a 
completed heartbeat originated in the sinoatrial node (SA) 
[2]. If this is not the case, the beat should be excluded 
from the HRV analysis. Therefore it is crucial to perform 
a manual or automated morphological recognition of 
beats in order to select the valid beats and reject the 
invalid ones.  
A large amount of data is obtained during a 24h AECG or 
Holter measurement. Since visual analysis of such 
amount of data is a time-consuming task, several 
automated computer-based methods for ECG analysis 
have been described in the literature [3-5]. This paper 
presents a novel approach for detecting irregular 
heartbeats using tensors and Support Vector Machines 
(SVM). 

2. Materials and methods

Figure 1 shows a diagram of the developed ECG signal 
classification diagram method. In the next sections, first 
the dataset is described. Then, each block of the diagram 
is briefly discussed. 

Pre-
processing

Segmentation 
and 

normalization  

CPD SVMTensorization

1

2

2

3

Classifier
Figure 1. Tensor based method for irregular heartbeat 
detection using CPD and SVM. 

2.1. Data 

The dataset is the database from St.-Petersburg 
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Institute of Cardiological Technics 12-lead Arrhythmia 
Database (INCARTDB) available on Physionet [6]. 
INCARTDB consists of 75 annotated recordings 
extracted from 32 Holter records. Each record is 30 
minutes long and contains 12 standard leads. The sample 
frequency is 257 Hz. Table 1 shows the distribution of the 
heartbeat classes along the entire database. 

Table 1. INCARTDB classes distribution. 

Normal (%) PVC (%) Other (%) 
87.30 11.38 1.32 

In this study, only two classes were considered; the 
normal class (N)ormal and the abnormal class 
(A)bnormal which includes the PVCB type and the rest 
of the irregular beats. 

2.2. Pre-processing and segmentation 

The pre-processing block is divided in two stages: (1) 
elimination of baseline wander and (2) high frequency 
noise filtering. The first stage uses median filtering [7] 
and the second one uses a wavelet filter with a hard 
thresholding approach [8]. 

The median filter uses two window sizes, 200 ms and 
600 ms. The first window eliminates the P waves and the 
QRS complexes of each heartbeat. The second window 
eliminates the T wave. After removing the physiological 
waves the resulting signal is considered as baseline 
wander. Next, it is subtracted from the original ECG to 
eliminate the baseline drift. 

The second stage filters out the high frequency noise. 
First, the Discrete Wavelet Transform (DWT) of the 
signal is computed. This process decomposes the signal 
into four levels using the Daubechies 4 (db4) as a mother 
wavelet. After the signal decomposition, both detail 
coefficients 1 and 2 are filtered using thresholds for each 
level. Finally, the signal is reconstructed using the inverse 
DWT (IDWT) [8]. 

Next, the ECG signal is segmented into different beats 
by taking a window around each R-peak. In this paper we 
have used the R-point annotations provided in the 
database. The length of the (asymmetric) segmentation 
window is equal to 131 samples including the R-peak 
point. It starts 50 samples (195ms) before each R peak 
and selects 80 more samples (310 ms) after each peak. 
Each beat was normalized by subtracting the average 
value and dividing by the standard deviation. 

2.3. Tensorization and CPD 

Here we use a tensor approach for representing the 
ECG signal. The use of tensors is a natural choice for 
representing 12-lead ECG signals because it preserves the 

structural information contained in a beat i.e. it allows to 
treat each beat as a matrix which contains the information 
of all standard leads. The process of transforming the 
signal into three-way arrays (tensors) is called 
tensorization. The process consists of arranging each 
heartbeat (12 leads) in the record one after other 

The constructed tensor has three modes. The first mode 
is the space, i.e. the channels, the second one is the time 
course, and finally the last mode is the heartbeat. Each 
beat is stacked in order, see Figure 2. The result is one 
third-order tensor for each record in the database. 
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Figure 2. Tensorization process. 

Canonical Polyadic Decomposition (CPD) [9] 
decomposes the tensor 321 III ××ℜ∈X  as a minimal
sum of R rank-1 tensors, 
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where R is the rank of the tensor X. 
The criterion for selecting the correct rank is based on 

the mean relative error behaviour for different R values. 
For each record we computed the mean relative error 
(mre) varying R in the range (1-20). Then we plotted each 
graph of mre vs R. Figure 3 shows the mean relative error 
with respect to the rank of the CPD for the whole 
database. The figure was obtained by averaging the 
graphs of each individual record. As expected, the mean 
relative error monotonically decreases with the rank of 
the CPD. The error value drops below 20% when R ≥ 12. 

However, the error drop between orders six and twelve 
is only of 5%, and smaller for the range (12-20). 
Conversely, the mean relative error decreases 
approximately 30% from one to five components. 
Furthermore, the improvement in the mean relative error 

 

 

  



is below 5% when the number of rank-1 terms in the CPD 
increases from three to four. By contrast, the first two 
differences are 17.56% and 12.05% respectively. This 
suggests three as the appropriate number of rank-1 terms. 

Figure 3. Mean relative errors in a Rank-R CPD (1 ≤ R ≤ 
20), all records in the database were included. Both 
dashed-lines represent ±σ respectively 

The rank-3 CPD yields three loading matrices 
corresponding to space (channel), time course and 
heartbeat mode respectively. The heartbeat mode matrix 

33×ℜ∈ IH will be used as the input of the SVM
classifier. 

2.2. SVM 

This paper uses a binary linear SVM for classifying. 
We have chosen the linear classifier because it is simpler 
and faster than the nonlinear ones. The main drawback is 
that non-linearly separable datasets will degrade the 
performance. 

The classifiers were created, trained and tested using 
LIBSVM [10]. A very useful feature of LIBSVM is the 
inclusion of weighted SVM for dealing with unbalanced 
data. Owing to the balance ratio between classes in 
INCARTDB is close to seven, we suggest a weight value 
in the range (3-7). The results below were obtained with a 
weight value of five. 

Here, we followed a “by record” training and testing 
strategy. The term “by record” means that the training and 
testing processes are done for each record. The training 
process randomly takes the 2% of the beats in the record; 
the ratio among classes is kept. We use a low percentage 
for training to allow a user to build the training set 
manually in a future implementation. In such conditions it 
is desirable that small training sets guarantee high 
classification performances. 

The performance evaluation for the classifier was 
carried out by computing four indexes in the testing set: 
Sensitivity (Se), Specificity (Sp), Positive Predictive 
Value (Ppv) and Accuracy (Acc). 

3. Results and discussion

Tables 2 and 3 show the global confusion matrix and 
the performance indexes of the classifiers respectively. 
Table 2, was obtained by summing the confusion matrix 
of each record. Record 61 was omitted from the database 
since it only contains 1 irregular beat. Hence, it is not 
possible to build training and testing sets using the 2%-
98% ratio.  

Table 2. Global confusion matrix for all classifiers. 
Classes (A)bnormal and (N)ormal. 

Output/Target A N 
A 20530 3421 
N 1333 145666 

Table 3. Global performance indexes for all classifiers. 

Se(%) Sp(%) Ppv(%) Acc(%) 
93.90 97.70 85.72 97.22 

We also examined the performance at record level 
under two conditions; imbalanced and well-balanced 
datasets. The first example corresponds to the record 36 
of the database. This record has 3449 (N)ormal and 462 
(A)bnormal heartbeats yielding a balance ratio of 88%-
12%. The test results for this record are shown in Tables 
4 and 5. The method shows an acceptable performance. 

Table 4. Confusion matrix for the classifier trained and 
tested with record 36 (imbalanced dataset). 

Output/Target A N 
A 387 47 
N 66 3333 

Table 5. Performance indexes for the classifier trained 
and tested with record 36 (imbalanced dataset). 

Se(%) Sp(%) Ppv(%) Acc(%) 
85.43 98.61 89.17 97.05 

The second example corresponds to the record 31 
which has 1844 (N)ormal and 1366 (A)bnormal 

 

 

  



heartbeats yielding a balance ratio of 57%-43%. The 
performance indexes are also good for this record, see 
Tables 6 and 7. 

Table 6. Confusion matrix for the classifier trained and 
tested with record 31 (well-balanced dataset). 

Output/Target A N 
A 1332 24 
N 7 1783 

Table 7. Performance indexes for the classifier trained 
and tested with record 31 (well-balanced dataset). 

Se(%) Sp(%) Ppv(%) Acc(%) 
99.48 98.67 98.23 99.01 

As can be seen from the tables above, the classifier has 
a good performance under both imbalanced and balanced 
conditions. However, in records with majority of Atrial 
Premature Beats (APB) such as records 33 (591 APB) 
and 34 (536 APB) the classifier shows the worst 
performances (Sp = 0%). A possible explanation for this 
behaviour might be that Normal and APB heartbeats are 
not linearly separable. In future investigations it might be 
possible to use fine tuned nonlinear SVM in order to 
address these difficult cases. 

To conclude, the findings of this study suggest that the 
use of tensors and tensor decompositions in combination 
with SVM is feasible for detecting irregular heartbeats. 
Moreover, the method has the advantage to deal with high 
dimensionality data in a simple and aesthetic way.  
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