Monitoring the Heart Rate in Cerebral Oximetry Signals
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Abstract

Cerebral oximetry of the frontal lobes based on Near
InfraRed Spectroscopy (NIRS) is used to monitor brain
tissue oxygen saturation in 2-4s intervals. However,
higher sampling rates may enable heart rate (HR)
monitoring. In total, 29 subjects were enrolled in 40 min
recording sessions. Cerebral oxy-haemoglobin (O;Hb)
concentration at 50Hz and the ECG were concurrently
recorded. ECG was the reference for the HR algorithms
based on the O,Hb signal. The results show that accurate
heart rate monitoring and beat detection on cerebral
frontal lobe oximetry signals is feasible for normal heart
conditions when the NIRS signals are sampled at high
rates.

1. Introduction

Monitoring oxygenation is critical in intensive care
units or emergency departments, and several non-invasive
techniques exist, although the most widespread one is the
photoplethysmography (PPG)[1]. PPG to monitor tissue
oxygen saturation is obtained via a pulse oximeter based
on the transmission/reflection of light signals through/in a
tissue under test. The oximeter is normally attached to the
patient’s index finger, but it can be worn in the ear, nose
or toe[2]. Attached to peripheral parts of the body [3],
pulse oximeters are unusable in emergency situations in
which the cardiovascular system prioritizes vital organs
(heart and brain) and hence, the blood flow reaching the
extremities is very limited.

The search for a non-invasive cerebral oxygenation
monitoring technique has become a challenge. One of the
most promising alternatives is Near InfraRed Spectroscopy
(NIRS). NIRS was demonstrated in 1977 by Frans F
Jobsis [4], and currently experiences a massive growth in
medical scenarios such as cardiac surgery [5, 6], or as an
emerging technology to monitor cardiac arrest patients [7].
NIRS rests on the transmission and absorption of NIR
light as it passes through cerebral tissue. Light absorption
analysis allows the calculation of concentration changes in
oxy- (O,Hb) and deoxy-haemoglobin (HHb), from which
tissue oxygen saturation is estimated [6]. Currenlty, NIRS
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devices record cerebral saturation every 2-4s.

Although the recording of saturation at those sampling
rates is sufficient to monitor patient oxygenation, higher
time resolutions may enable additional monitoring.
Indeed, this study evaluates heart rate monitoring using a
NIRS sensor of high time-resolution. Besides an accurate
monitoring of the heart rate, a reliable detection of the
heart beats using the NIRS signals would allow further
analyses such as heart rate variability or the estimation of
respiratory rate through respiratory sinus arrhytmia [2].

2. Materials and methods

2.1. Materials

Measurement system. Two independent systems were
concurrently used to record the biomedical signals: (1)
an experimental NIRS sensor (PortaLite, ArtiNirs) capable
of recording haemoglobin concentrations at high sampling
rates, and a BioPac system equipped with an ECG (ECG
100E), PPG (OXY 100E) and an impedance modules
(NICO 100C) attached to a National Intruments data
acquisition card (NI-6211, 16 bits/sample per channel).
As shown in Figure 1, both systems were controlled

Figure 1. Photograph of a recording session showing the
measurement system, electrodes and subject position.
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via a single laptop. The recordings were synchronized
using time-stamps on the resulting files. The ECG,
impedance and PPG signals were sampled at 250 Hz and
the cerebral haemoglobin concentration signals at 50 Hz
(maximum allowed by the device). The ECG signal was
used as gold standard to identify the heartbeats, and the
O,Hb concentration signal was used to identify beats and
automatically compute the heart rate.

Measurement protocol. A protocol was designed
to record 40-min of data per subject, subdivided into
four 10-min sessions at different breathing conditions,
including free-breathing and controlled breathing at slow
o min_l), normal (12 min_l) and fast (18 min_l) rates.
Subjects lay in supine position within eye contact of a
visual metronome to control the breathing rate, as shown in
Figure 1. Lead II of the ECG was recorded, PPG at the left
index finger, and the NIRS sensor was placed in the left
hemisphere. Each recording session lasted about 1.5-2h
including breaks between sessions, subject preparation and
quality checks of the recorded signals. Subjects were
enrolled in the study after approval by the ethics committee
of the UPV/EHU.

Final database. In total 29 subjects (20 female) were
enrolled in the study. The median age, weight and height
of the subjects was 24 years (23-28.5), 67 kg (58-72) and
168 cm (163-173.5), respectively. QRS complexes were
automatically detected using the Physionet version of the
wars detector [8], and were then manually revised and
audited. The audited marks were stored in the database
as gold standard for the beat detection and heart rate
estimation algorithms based on the O,Hb signal. For
the present study only the ECG and O,Hb concentration
signals were used, Figure 2 shows an example of the
signals used.

2.2. Methods

Two approaches were developed to monitor the heart
rate (HR) using the O,Hb signal. The first approach was
based on a beat detection algorithm (peak detection), and
the second exploited the quasi-periodicity of the signal
in short intervals. As shown in Figure 2, in both cases
the O,Hb signal was first band-pass filtered to remove
the DC offset and low frequency components (movement,
respiration), and high frequency noise.

The beat detection algorithm followed a window
approach. First the O,Hb signal was forward-backward
filtered using an order 8 elliptic bandpass filter (0.4—6 Hz
and 1/40 dB equiripple). Then troughs of the signal were
detected in 20-s intervals (windows) with an amplitude
threshold of 10% of the amplitudes of the troughs of
the previous window and a refractory period between
beats of 0.5s. Additional troughs were searched for if
consecutive trough separations exceeded 1.3 s (patch for
false negatives). Then the process was repeated to detect
peaks and a final check was made to ensure peaks and
troughs were interleaved (patch for false positives and
negatives).

Heart rates were computed using a 10 s sliding window
with 50% overlap as the inverse of the mean RR-interval,
RR, both for the audited beats and for those obtained from
the O,Hb signal, i.e.:

HR (min~!) = ﬂ)ﬂ. (1)
RR (ms)

The second approach to HR estimation exploited the
quasi-periodicity of the preprocessed O,Hb signal for short
intervals. The method is based on the Average Magnitude
Difference Function (AMDF) [9], which is extensively
used in voice processing as a computationally efficient
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Figure 2. Example of the recorded signals showing heartbeats in the ECG and O,Hb signals. Heartbeats in the O,Hb are
discernible after preprocessing (0.4-6 Hz), as shown in the bottom panel.



pitch detector. Indeed, the AMDF function for an L sample
segment of the signal x is defined as:

1L
D, (n) = 7 Z |z(k) —x(k—n)], n=1,..,"max, )
k=1

and can be shown to be closely related to the
autocorrelation function but avoiding the computationally
demanding products[9]. In fact for a purely periodic
signal the AMDF function presents local minima at the
fundamental period and its multiples, as shown in Figure 3
for a 10-s segment of the O,Hb signal. The fundamental
period (mean RR interval) can be estimated as the second
local minimum of D, (n), since D,(n) is minimum for
n =0, D,(0) = 0. Heart rates were computed using a 10s
sliding window with 50% overlap. For every 10-s segment
the AMDF was computed and 7, was estimated as its
second local minima. The HR was then estimated using
To (ms) instead of the mean RR interval in equation 1.
Occasionally there was a large variation in RR intervals
within the segment, caused mainly by the modulation
of RR intervals by respiration. This compromises the
periodicity of the O,Hb signal and Ty is not a good
estimate for the HR. Those cases were identified by
examining the regularity (intervals and depth) of the first
3 minima of the AMDF function (excluding n = 0). For
irregular intervals the 10-s segment was subdivided into
4-s segments with 50 % overlap and the AMDF method
was applied to each sub-segment. The HR was then
estimated as the mean of the 4 values obtained in this way.

2.3. Evaluation

The heartbeats detected by the peak detection algorithm
on the O,Hb signal were compared to the audited
annotations in the ECG (approximate delay 0.5 s), and true
positives (TP), false positives (FP) and false negatives (FN)
were identified. Then the Positive Predictive Value (PPV)
and Sensitivity (SE) were computed for each recording
session (respiration condition and patient).
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Figure 3. Estimation of the fundamental period (7j) from

the AMDF function, computed up to 7,4, = 200.

HRs obtained from the RR intervals of the audited
ECG annotations were compared to those obtained from
the peak detection algorithm and from the method based
on the AMDF function. Bland-Altman plots and their
corresponding limits for the 90% level of agreement were
used to compare the HR values from the gold standard and
the algorithms. In addition relative errors (e,.), absolute
relative errors (|e,|) and concordance coefficients (p.)
were used to evaluate the precision of the HR monitors.

3. Results

The median HR and the inter-decile range (IDR)
obtained using the audited annotations were 65.0 min '
(55.5-78.9), for 10-s segments and 50 % overlap. The
median coefficient of variation of the RR intervals in those
segments was 0.06 (IDR, 0.02-0.13).

The peak detection algorithm was very accurate with an
overall SE and PPV of 99.7% and 99.85%, respectively.
Figure 4 shows the boxplots of the SE and PPV per patient
for each respiration rate, which shows very good results
with SE/PPV values above 98% in most cases.

Figure 5 shows the Bland-Altman analysis of the HR
monitors. The HR monitor based on the peak detector
is more accurate with LOAs of (-0.9-0.9), the LOAs for
the method based on the AMDF function were (-2.8-1.4).
Using peak detection, underestimation of the HR was
caused by FNs while overestimation by FPs. The mean
relative error and mean absolute relative error were 0.0
(£ 2.0)% and 0.5 (+ 2.0) % for the peak detector, and
-0.6 (£ 3.7) % and 1.6 (£ 3.4) % for the AMDF method,
and the concordance coefficients were 0.991 and 0.968,
respectively. Errors and concordance coefficients for the
different respiration rates are shown in Table 1, which
shows that the precision did not vary significantly for the
different respiration modes, and that the bias observed in
the AMDF method occurred for all the respiration modes.
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Figure 4. SE/PPV values of the beat detection algorithm
grouped by respiration rates/modes.
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Figure 5. HR monitor errors compared with the GS.

4. Discussion

This study shows that an accurate heart beat detection
is possible using the O,Hb signal from a NIRS sensor, but
this requires higher sampling rates than those customarily
found in commercial cerebral oximeters. In addition
two HR monitoring algorithms were demonstrated, and
we found that the HR based on beat detection to be
significantly more accurate than the HR based on the
periodicity of the O,Hb signal. The latter was negatively
affected by variations in the RR intervals caused by
respiratory sinus arrhythmia (subjects were young). An
accurate beat detection in NIRS signals allows further
analyses such as the estimation of the respiratory rate
through respiratory sinus arrhythmia, or the computation
of different heart rate variability indexes. Furthermore,
cerebral oximetry is becoming increasingly important
in the treatment of out-of-hospital cardiac arrest as an
hemodynamic marker of the efficiency of cardiopulmonary
resuscitation (CPR). In such scenarios, it is possible that
higher sampling rates in NIRS sensors may result in more
detailed information of the effect of CPR therapy.

Our results were obtained for healthy subjects in a
controlled scenario, consequently the range of HRs were
within normal limits. More challenging scenarios with
either higher HRs or bradycardic patients may require
slight modifications to the beat detection algorithm, such
as adapting the refractory periods. In addition, in an
out-of-hospital setting more elaborate preprocessing of the
O, Hb signal may be needed to avoid all sources of noise.
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Algorithm e-(%) le-|(%) Pe
Peak detector
Free 0.01(1.11) 0.29(1.07) .996
9 min~! 0.13(1.79) 0.47(1.73) .992
12 min~* —0.02(2.24) 0.64(2.14) .986
18 min~! —0.07(2.61) 0.61(2.55) .987
AMDF
Free —0.51(2.38) 1.32(2.04) .984
9 min~* —0.37(4.90) 1.80(4.57) .946
12min ! —0.62(3.83) 1.72(3.48) .960
18 min~! —0.74(3.20) 1.47(2.94) .976

Table 1. Precision of the HR monitors for the different
respiration rates, errors as mean (standard deviation).
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