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Abstract 

 Phonocardiography (PCG) is the one of non-
invasive ways to diagnose condition of human heart. The 
mechanics of heart muscle contractions and closure of 
the heart valves generates vibrations audible as sounds 
and murmurs, which can be analysed by qualified 
cardiologists. Developing an accurate algorithm to 
determine whether patients’ heart works properly or 
should be referred to an expert for further diagnosis 
would significantly improve the quality of healthcare 
system. It would allow to perform less unnecessary, 
expensive and time consuming examinations.   
 The analysed data consisted of PCG recordings from 
the training set provided by the organizers of the 
PhysioNet Challenge 2016. Its length varied from several 
to 120 seconds. 
 We propose the machine learning algorithm based 
on neural networks. The segmentation of the PCG signals 
is performed with algorithm based on Hidden Markov 
Model. Whereas, the features necessary to define 
whether the signal looks normal or should be further 
analysed were carefully chosen by our team and 
belonged to time domain, ordinate axis or frequency 
domain group. The great emphasis was put on the 
statistical features representing the characteristics of the 
signal. Their optimal values were found during the 
process of learning of our algorithm. 
 The best overall score we achieved in the official 
phase of the PhysioNet Challenge 2016 is 0.79 with 
specificity 0.76 and sensitivity 0.81. 

1. Introduction

Auscultation is one of the examination techniques most 
commonly used by the doctors during both hospital and 
house visits. It allows to diagnose a wide range of 
pathologic cardiac conditions from arrhythmias to valve 
diseases or heart failure. The heart sounds audible in PCG 
recordings result from the mechanical activity of the 
heart muscle. Contractions of ventricles and atriums 
cause the closure of the respective valves. They start to 

vibrate with their natural frequency, what can be heard 
via stethoscope. Apart from the correct heart sounds such 
as S1 and S2 the pathological murmurs can be heard. 
Depending on their localization different pathologies and 
structural defects can be diagnosed.  
      We analysed over 3 000 heart sound recordings from 
the PhysioNet Challenge 2016 training set. It contained 
very short PCG signals lasting between 5 and 120 
seconds. Each signal was already labelled as normal or 
requiring the expert consult. Our task was to create an 
algorithm which will divide set of signals into such two 
groups. All signals were provided as *.wav format and 
were sampled at rate of 2 000 Hz. Further information 
about the database and challenge rules can be found 
in [1]. 

The core of our algorithm is the neural network with 
48 features. To assure that our network will learn only on 
good quality signals (because the bad quality ones would 
distort the values of features on which the network was 
trained), we excluded from our training set presented to 
the network all of the signals that organizers marked as 
uncertain. 

Based on the set of the features on which the network 
was trained it decides whether the analyzed signal should 
be classified as normal or abnormal, which was the main 
task of the PhysioNet/Computing in Cardiology 
Challenge 2016. 

2. Methods and results

2.1. Preparation and analysis of the 
signals 

One of the base steps performed by our algorithm is 
the segmentation of PCG signal, which is necessary to 
calculate the chosen features. We used the state-of-art 
algorithm utilizing Hidden Markov Model [2], which was 
further developed by Springer [3]. It allowed us to 
determine all of the features describing the consecutive 
phases (S1, S2, Systole, Diastole) in time and ordinates 
axis. 
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Fig.1 Flow chart of PCG classification algorithm. 

2.2. Pre-neural network classification 

As shown on the Figure 1, before the neural network 
was applied we excluded some recordings from further 
analysis by already classifying them with set of criteria 
to assess the signal quality and by pre-classification of 
abnormal signals, which are described in detail below. 

Assessment of signal quality 
We assessed the quality of the PCG signal as a first, 

starting step.  At the beginning we used the method for 
preliminary detection of peaks in signal, which are 
inclined to occur during the S1 or S2 phase (whichever 
have higher amplitude in PCG cycle). We calculated the 
energy of the normalized signal (the normalization was 
performed separately in each of 25 windows of the 
signal) as described in [4]. Next we determined the peaks 
with Gierałtowski et al. method [5] based on the slope 
detection in the signal.  In the next part of the method, we 
calculate Wavelet coefficients of the whole signal by 
using Daubechies-2 wavelet at second decomposition 
level (according to [6]) and use these coefficients as an 
input signal to later evaluations. We created three sets of 
criteria for assessing signal quality. If the signal did not 
meet at least one criterion it was classified as uncertain. 
First criterion: RMSSD (root mean square of successive 
differences) of the signal must be lower or equal to 0.026 
[arbitrary units]. Moreover, the number of times which 
the signal intersected the horizontal line determined by 
0.85 quantile of values of that signal divided by the signal 
length must be lower than 0.06. Second criterion: we 
analyzed the signal in 2200 ms length moving windows 
with overlap 25% and checked how many peaks are 
detected in each window. We assigned 1 to each window 
containing 2-4 peaks and 0 in other cases. The criterion 
was met when the number of scores equal to 1 is 65% of 
the all notes calculated in each window. Third criterion 
was similar to the first one, but in this case there was 
calculated the value of 0.58 percentile of signal and the 
number of detected peaks was extracted from the whole 
number of intersections. According to these rules, the 
number of intersections must be fewer than 18. Note that 
the second and the third criterion were checked 
depending on the number of detected peaks per one 
second of the signal. If that value was higher than 1.1 s, 
signal had to meet only the second criterion. Otherwise, 
only the third criterion was checked. 

Pre-classification of abnormal signals 
The second step of the algorithm classified the recordings 
as abnormal based on their systole and diastole phases 
without using the neural networks. This approach was 
chosen to eliminate evidently abnormal recordings, 
which might be classified without complex methods. 
This way we could save time and assure that by limiting 
the variety of the signals, they will not distort values of 
the features presented to the neural network. We created 
the method providing high precision of detection 
abnormal cases (91%) but with relatively low specificity 
(11% of the whole set of abnormal signals). As the input 
to this method we used the PCG signals and the assigned 
states obtained from segmentation algorithm. We 
calculated three features, separately for systole and 
diastole phase and for both phases joined in one signal. 
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We normalized each beat of the signal by mean and by 
the difference between maximum and minimum value. 
Then, in each of the segmented PCG cycles: RMSSD, 
SD1 of the Poincare plot and the number of zero 
crossings of the signal (normalized by the signal length) 
were calculated. Next, we determined the difference 
between these features calculated for systole and diastole 
phases divided by the values obtained from joined 
phases. Finally, we analysed the values of the features in 
each beat and assign 1 for beats which are exceeding at 
least one of established thresholds (0.8 for RMSSD, 0.6 
for zero crossing and 0.8 for SD1) and 0 otherwise. If the 
number of 1 notes divided by the number of whole 
detected beats is higher than the second set of thresholds 
(0.8 for RMSSD, 0.8 for zero crossing and 0.7 for SD1) 
the signal is classified as abnormal. The values of the 
thresholds were established by using exhaustive search 
method.  

2.3 Features to neural network 

After performing pre-neural classification, neural 
network is responsible for recognizing normal and 
abnormal signals. The outcome depended on the features 
extracted from PCG signals. Three categories of features 
can be distinguished, as presented in Fig.1: 

X – features based on parameters obtained with signal 
observation by time axis, 

Y – features based on parameters obtained with signal 
observation by ordinates axis, 

FRQ – features based on calculations on signal 
parameters obtained by examination in frequency 
domain. 

Description of the parameters included in each of the 
categories is presented below: 

X: 
In the group of time domain features we concentrated on 
those carrying information about regularity of length of 
the consecutive phases (S1, Systole, S2 and Diastole). We 
described these parameters by the mean and standard 
deviation calculated in the whole signal. The 
abnormalities in proposed features might indicate 
additional sounds, which in adults signify pathologies 
and should be classified as abnormal. Additionally, we 
enclosed feature determining the ratio of length of S1 and 
S2 interval. Moreover, we assumed that the summarised 
length of S1, Systole and S2 phases can represent the QT 
interval in each heart beat and we calculated its standard 
deviation among the signal. Finally, we included some of 
the parameters proposed by the organizers in Sample 
Entry which regarded lengths of consecutive phases.  

Y: 
To the second group were assigned features based on 
parameters from ordinates axis obtained mostly by the 

close observation of the signal. In this part we had taken 
into account the characteristics, which described mean 
value of the mean absolute amplitude ratios between 
systole/diastole period and S1/S2 period in each cycle. 
We also included the standard deviation value of the 
mean absolute amplitude ratios between systole/diastole 
period and S1/S2 period in each heartbeat. 

FRQ: 
The last of the proposed groups included parameters 
calculated in frequency domain. The first pair of 
parameters represented the power of S1 and S2 intervals 
respectively. They were calculated as the sum of the 
absolute values of signal in this phases. Than we 
determined the root square mean of the squares of the 
successive differences between adjacent intervals (S1, 
S2, systole, diastole respectively). We also implemented 
the parameter, which describes value of the main peak 
frequency divided by the width of the peaks for S1 
intervals. As the next parameter we considered width of 
the main peak in the S1 interval. Finally we added to the 
features set the average powers in the respective 
frequency ranges (0-50 Hz or 100-200Hz) for S1, systole, 
S2 and diastole phases.   

All of the features contributed to the network by 
indicating whether the rhythmicity in the signal was 
maintained. 

2.4 Neural network characterization and 
training  

We used two types of neural network architectures: 
standard multilayer perceptron architecture with 1 hidden 
layer and deep network architecture with 2 hidden layers. 
In both cases the input layer size was equivalent to the 
number of features (48 features for the best score) and the 
output layer was 1 neuron with linear transfer function 
giving a classification result (1 for positive sample or -1 
for negative sample). 

We determined the hidden layer size in the standard 
architecture by plotting the optimization surface 
presenting the classification error (Mean Squared Error) 
on the validation subset in the range of 31–71 hidden 
neurons (sigmoid transfer function). The best 
architecture was 59 hidden neurons and training time of 
130 epochs (for Scaled Conjugate Gradient training 
algorithm) or 35 epochs (for Levenberg–Marquardt  
training algorithm). We also used the regularization 
parameter of 0.1 to prevent overfitting on the training 
subset. The number of 59 neurons was adopted as the first 
hidden layer in the deep network. 

In the case of the deep network architecture we 
performed pre-training of the hidden layers (so called 
autoencoders). The pre-training involved training each 

 

 

  



layer in a such way that the output of the layer was the 
same as the input. Therefore the weights in the layer are 
closer to the proper place in the weight space and final 
training can be effective. When the size of the feature 
vector in the autoencoder is greater than the size of the 
layer, the pre-training causes that the information from 
the feature vector is compressed to the smaller number of 
neurons. At the final stage all the hidden layers (59 and 
15 neurons) and the output layer were stacked into one 
network and the final training (fine tuning) was 
performed. 

The original output of the linear neuron in the output 
layer was linear function ranging from 0 to 1 which was 
mapped to -1 and 1 with the threshold of 0.5. We set this 
threshold to 0.75 (increasing specificity). 

3. Results

    For the training set, our algorithm performed with 
sensitivity of 0.83 and specificity of 0.62, giving overall 
score equal to 0.73. For the test set, our final result in 
PhysioNet Challenge 2016 equaled 0.79. The algorithm 
performed with sensitivity of 0.81 and specificity of 0.76. 

4. Discussion & conclusions

The proposed algorithm consisted of three modules: 
assessment of signal quality, pre-detection of abnormal 
signals and neural networks.  

The advantage of direct classification of the poor 
quality signals was that the features provided later to the 
neural network came only from proper PCG signals and 
supplied it with crucial information about the said signal. 
The pre-detection module was characterized by very high 
precision, what kept us from increasing the false positive 
classifications. But it’s extremely low specificity 
prevented the algorithm from detecting more complex 
abnormal recordings, what should be improved to arise 
algorithm efficiency. As for now, this method is 
extremely effective in detecting signals from patients 
with mitral regurgitation, which represented the majority 
of recordings classified as abnormal in this step. 
Current algorithm does not have any mechanism to cope 
with artifacts occurring irregularly, due to external 
factors e.g. opening and closing of the doors, machine 
hum, human voices or technical problems such as 
moving the chest piece of  stethoscope on the skin during 
measurement (In cases where the level of such 
disturbance is extremely high it is detected by the Signal 
Quality Assessment method – see fig. 1.). Now, we 
eliminate influence of such interruptions on our features 
by taking the statistical majority of the results leaving the 
margins to mentioned interruptions. The appropriate 
preprocessing of signal might assure higher quality of 
latter analysis and classification.    

The performance of the neural network part of the 
algorithm was sufficient, but we believe that the results 
would be significantly better if the information about the 
location of the stethoscope on the chest was more 
detailed. Then, we would be able to adapt the features for 
each location and look for the particular pathology. What 
is more, supporting the choice of the final features to the 
network by using another learning algorithm might prove 
to be more accurate. 
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