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Abstract

As a part of 2016 Physionet/CinC callenge, this work
aims at the detection of abnormal phonocardiogram
(PCG) recordings. Heart sound signal analysis has been
an active research topic over the past decades with vari-
ous studies such as heart sound segmentation and classi-
fication. We used the Physionet/CinC2016 challenge PCG
database, which contains a large public collection of PCG
recordings from a variety of clinical and nonclinical en-
vironments. The PCG classification in this work is per-
formed in two steps. PCG heartbeats are first segmented
and various heart sound markers are delineated. Then, a
series of beat-specific features are extracted from the seg-
mented heartbeats. Finally, PCG recordings are classified
into normal and abnormal groups by performing classifi-
cation based on tape-long features and by analyzing beat-
extracted features from the PCG. Our method achieved an
overall score of 80 in the unofficial phase of the challenge.
In the official phase, the overall score of the proposed
method was 82, with a sensitivity of 89%.

1. Introduction

Mechanical activity of the heart, which is triggered by
the propagation of electrical activity within the heart, is
audible at different locations on the chest wall. Phonocar-
diogram (PCG) is an audio recording of these mechanical
activities recorded at the chest surface. Heat sounds pro-
vide valuable information which can help in the diagno-
sis of heart valve disorders. PCG comprises fundamental
heart sounds from which S1 and S2 are the most promi-
nent in normal recordings, respectively representing the
beginning of ventricular contraction and the beginning of
diastole [1]. In abnormal cases, various markers maybe
present beside the fundamental heart sounds such as mur-
murs. Murmurs are noise-like high frequency sounds and
long systolic murmurs as well as diastolic and continuous
murmurs are generally pathologic [2].

Auscultation is a common cost-effective technique that
provides valuable information about heart valve problems.
However, by listening to mechanical activity of the heart

with a stethoscope, physicians cannot examine all physi-
cal characteristics of heart sounds, as it has been shown
that only limited activity of heart sounds and murmurs are
within human audibility range [1][3].

Over the years, various heart sound classification meth-
ods have been proposed. Generally, the analysis of heart
sounds is performed on the heart cycle. To this end many
PCG heart sound segmentation methods have been devel-
oped, enabling the detection of fundamental heart sound
markers such as the beginning/end of S1, systole, S2 and
diastole. These segmentation techniques use different ap-
proaches such as signal envelopes [4][5], frequency and
amplitude features [6] as well as phase [7] and complexity
features [8], hidden markov models (HMM) [9][10], and
machine learning approaches [11][12].

With the segmented cardiac cycles, the classification of
heart sound pathologies is made possible and several meth-
ods have been proposed over the last decades. Among
these studies, artificial neural networks [13], support vec-
tor machines [14] and HMM based [15] approaches are
common. Classification based on clustering has also been
shown to be effective in heart sound pathology classifi-
cation [16]. Typical features used in these studies com-
prise time-domain, frequency-domain, time-frequency and
complexity-based features [13][14][16].

2. Methods

This study aims at the identification of abnormal PCG
recorded in various conditions and locations, as a part of
the Physionet/CinC 2016 Challenge. Our approach relies
on heartbeat driven features that are reinforced with tape-
long features for a robust classification of PCG. Block di-
agram of the proposed method is illustrated in Fig. 1.

2.1. Challenge Data

For this challenge, train/test datasets were created by
collecting nine smaller datasets from several contributers
around the world. Data were collected from different lo-
cations on the body and in clinical/nonclinical conditions.
All recordings were resampled to 2000 Hz and standard-
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Figure 1. Block diagram of the proposed method.

ized for this challenge. Out of the nine different datasets
in this challenge, a subset of six were used for training
and six were used as hidden test set. Training and hid-
den test subsets contained two exclusive databases and
four non-overlapping shared databases. For training set
an overall 3239 recordings was considered from 764 sub-
ject with 79.5% and 20.5% of the dataset corresponding
to respectively normal and abnormal instances. The hid-
den test set comprised of 1353 recording from 308 subjects
with 11.3% abnormal, 72.8% normal and 15.9% unsure in-
stances [2].

2.2. Beat to Beat Analysis

Heartbeat Segmentation. In order to analyze heart-
beats and extract beat-driven features, the first step is to
perform heartbeat segmentation on PCG recording in order
to extract various heart sound markers. In order to alleviate
this issue, we used the provided state-of-the-art PCG seg-
mentation algorithm for this challenge [9]. This duration-
dependent HMM segmentation algorithm is able to delin-
eate the S1, S2, systole and diastole phases of PCG which
are essential for the beat-to-beat analysis of the PCG.

Heartbeat Features. After PCG segmentation, each
heartbeat is scrutinized for beat-driven features. First,
time series representing each beat is non-parametrically
decomposed into several sub-signals using singular spec-
trum analysis (SSA) [17]. Observations have shown that
generally, 99% of the original signal can be recovered us-
ing the five largest components and therefore only these
levels were further processed. A series of features were ex-
tracted directly from these components such as variances
and central frequencies. Furthermore, the mean, energy,
ratio between maxima in the systolic phase, six highest
component maxima (heuristically chosen) inside the sys-
tolic or diastolic phase, the sparsity of compositions (cal-
culated as number of samples higher than a threshold), the
mean and variance of the instantaneous frequency of com-
ponents.

2.3. Tape-long Features

The scheme described here uses benefits from features
which describe the overall behavior of the PCG alongside
beat-features. Although the state-of-the-art mostly focuses
on beat-driven features, our work examined a wide range
of tape-based features that could be suitable for abnor-
mal PCG classification. Moreover, tape-long features are
preferable to beat-driven features as generally their com-
putation does not require the overhead of segmentation and
beat-by-beat feature extraction.

Murmurs can be mostly considered as high frequency
noise-like activity in PCG. Therefore, we studied how well
the normal/abnormal PCGs are represented using a single
frequency. In order to quantify this, we used the spectral
purity index (SPI) [18]. SPI is defined based on running
second- and fourth-order spectral moments and ranges be-
tween [0, 1], with one representing a pure sinusoid. Ob-
servations of SPI over the PCG signals in the training set
led to the conclusion that there is a noticeable difference
between normal and abnormal PCGs in terms of mean
and probability distribution function of SPI. Therefore, the
mean SPI and the normalized number of samples within
10% of mean SPI were used as features. Fig. 2 shows the
feature space created from SPI features.

Wavelet based features are commonly used for segmen-
tation and PCG classification. In the proposed scheme,
PCGs were analyzed using a 64-level debauchies WT and
the total energy of each decomposition were used as fea-
tures.

Instantaneous frequency (IF) is another suitable mea-
sure to describe the change of frequency in time. Since
different murmurs contain specific frequencies, especially
in the systolic and diastolic phases, the instantaneous fre-
quencies of normal and abnormal tapes are separable in
these phases. First, the instantaneous frequency is calcu-
lated the Hilbert transform of the PCG and then the mean
and variance in the systolic phase and the diastolic phase
are extracted as features.
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Figure 2. Signal purity index (SPI) feature space.

2.4. Beat Classification and Beat-to-Tape
Feature Linking

After extraction of the beat-driven features, a multi-
variate analysis was performed in order to create a nor-
mal/abnormal heartbeat classifier. Since the number of
normal instances were vastly higher than the normal in-
stances, the multivariate analysis was performed using an
abnormal-misclassification cost three times greater than
that of normal beat misclassification. Using the bagging
meta-algorithm with decision trees as base classifier and
a 10-fold cross-validation, an ensemble of classifiers was
created.

As PCG recordings in the training database vary in du-
ration, i.e. from a couple of second up to more than 100
seconds, it was necessary to further process the output
of the heartbeat classifier in order to use this information
alongside the tape-long features. Therefore, a series of
features were extracted from each PCG heartbeat string.
a Heartbeat string is defined as a binary array containing
the output of the heartbeat classifier for all heartbeats in a
recording. From the heartbeat string, the ratio of abnor-
mal beats, sum, and the standard deviation of the heartbeat
string were extracted as features and added to the tape-long
features from Sec. 2.3.

2.5. Tape Classifier

The final feature set is composed of the tape-long fea-
tures and heartbeat string features. Using this feature set, a
multivariate analysis was performed on the training PCGs.
As the number of normal and abnormal tapes in the train-
ing set is unbalanced, three sub-training sets were cre-
ated with all abnormal instances and the same number of
normal instances randomly chosen without replacement.
For each sub-training set a bagging ensemble was created
based on a 10-fold cross-validation. The final decision is

obtained through a pessimistic voting the output of these
classifiers. in which the tape is considered abnormal if any
classifier declare the instance as an abnormal case, as illus-
trated in Fig. 1.

3. Results

The Physionet/CinC2016 challenge was divided into an
unofficial and an official phase. For the unofficial phase
the training set comprised recordings from one exclusive
dataset and the shared training/test datasets. The hidden
test set contained only the recordings from shared datasets.
At the beginning of the unofficial phase the second exclu-
sive dataset was added to the training set and two exclusive
datasets were added to the hidden test set.

The score in this challenge was computed based on the
sensitivity (Se) and the specificity (Sp) of the proposed
schemes. In the unofficial phase, Se and Sp were calcu-
lated through Eq. 1 using values reported in Table 1. The
overall score considered as (Sp+ Se)/2.

Table 1. Sensitivity and Specificity Parameters.
Scheme Output

Abnormal Unsure Normal

Reference Label Abnormal Aa Aq An
Normal Na Nq Nn

Se =
Aa+ w ×Aq

Aa+Aq +An
and SP =

Nn+ w ×Nq

Nn+Nq +Na
(1)

where (w = 0.5) represents a weight set to penalize in-
correct ’unsure’ labels less than PCG misclassifications.
About two weeks before the final deadline, the scoring
function was changed for the official phase as described
in [2].

Table 2 shows the results obtained for the unofficial and
official phases of this challenge. Although the proposed
scheme does not reject low-quality signals, i.e. PCGs are
only classified into abnormal and normal groups, the ob-
tained score for the unofficial phase was 80. It is notewor-
thy that in the unofficial phase of the challenge, the pro-
posed method was solely based on the tape-long features.
With the start of the official phase, the best entry in the un-
official phase was resubmitted and an overall score of 76
was achieved. Then, beat-driven features were added to
scheme which resulted in a score of 82, that is an increase
of 6 percent to the overall score. However, after intorduc-
ing the new scoring function a final score of 79.9 was ob-
tained. Final performance on the training set brought a sen-
sitivity of 80.34% and a specificity of 86.33% which led to
a score of 83.34. It is noteworthy that the organizer of the
challenge also proposed a simple benchmark classifier [2].
This logistic regression classifier obtained a sensitivity and
a specificity of respectively 62% and 70%, with an overall
score of 66 on the training data.

 

 

  



Table 2. Performance details of the proposed scheme.
Unofficial Phase Official Phase

Sensitivity 0.70 0.76 0.746 *
Specificity 0.90 0.89 0.850 *

Overall Score 80 82 75.1 *
* based on the new scoring function

4. Discussion and Conclusion

In this scheme, several approaches were used to improve
the overall PCG classification robustness. From the basic
statistical features such as mean and variance of samples
in a heartbeat to more elaborate features such as spectral
purity index, time-frequency analysis and wavelet trans-
form analysis, we aimed at extracting a set of features that
could be descriptive enough to discriminate abnormal heart
sound recordings from the normal ones. It is noteworthy
that several approaches, such as denoising methods, in-
terbeat interval analysis were performed during this chal-
lenge. Although these features had some discriminative
capabilities, they were not as powerful as other features de-
scribed throughout this paper and therefore were discarded
in the feature selection analysis.

While the state-of-the-art is mostly focused on beat-
driven features, results show that tape-long features rein-
force the overall classification performance. The multi-
variate analysis on both beat-driven and tape-long feature
levels can be challenging as the datasets provided for this
challenge are not balanced. In this challenge we tried dif-
ferent approaches such as defining specific cost functions,
creating balanced training subsets and a hybrid of both.
Several classification methods such as decision trees, sup-
port vector machines and k-nearest neighbors were con-
sidered and at each and in the end the classifier with most
balanced outputs was selected.
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