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Abstract 

This study assessed the feasibility of using power 
spectrum analysis to compute additional features from 
heart sound recordings that can be used for normal / 
abnormal classification in the PhysioNet/Computing in 
Cardiology Challenge 2016. Our approach relies on the 
segmentation of the heart sound recording into the 4 
distinct Fundamental Heart Sounds (FHS) states. Based 
on the FHS states, the heart sound recording is divided 
into multiple segments - each segment corresponds to 1 
FHS state in 1 cardiac cycle. A fast Fourier transform is 
then performed on each of these segments. For each FHS 
state, we compute the ratio between the sum of the powers 
in the N highest peaks in the power spectrum to that of 
the entire power spectrum. The rationale is that the most 
dominant frequencies in the heart sound recording can 
potentially contain relevant information useful for 
classification. These additional features are subsequently 
combined with the features computed from the intervals 
of the 4 distinct FHS states. This enlarged set of features 
is used to train a feedforward neural network with 1 
hidden layer for heart sound clarification. The scores of 
our neural network on a random subset of the test data 
are as follows: Sensitivity = 0.747; Specificity = 0.788; 
Overall = 0.767. 

1. Introduction

The objective of this paper is to assess the feasibility of 
using power spectrum analysis to compute additional 
features from heart sound recording that can be used for 
normal / abnormal heart sound classification. Power 
spectrum analysis is a well-established method for 
computing the distribution of the dominant frequencies in 
signal processing. An uncorrupted (clean) sinusoidal 
signal will be represented by one single peak in the power 
spectrum corresponding to the angular frequency of the 
signal. When this sinusoidal signal is corrupted by white 
noise (noise with zero mean) of low amplitude compared 
to the original signal amplitude, the power spectrum will 
be represented by multiple peaks. It is still possible to 
identify the frequency of the original signal by searching 
for the most dominant frequency in the power spectrum.  

Based on this reasoning, it is plausible that power 
spectrum analysis can be used to identify additional 
features for heart sound classification. Intuitively, we will 
expect that the heart sound recording of a normal healthy 
individual to be dominated by a small subset of 
frequencies that correspond to the anatomical contraction 
and relaxation of the heart. This is because the contraction 
and relaxation are activated by regular and periodic 
electrical activities. In contrast, the heart sound 
recordings for patients with cardiovascular diseases will 
be corrupted with multiple sources of noise corresponding 
to the anatomical / structural heart defects [1].        

2. Methods

Our approach relies on the ratio between the sum of 
the powers in the N highest peaks in the power spectrum 
to that of the entire power spectrum. The rationale is that 
the most dominant frequencies in the heart sound 
recording can potentially contain relevant information 
useful for classification. The detailed step for our 
approach is as follows: 

(i) The heart sound recording is segmented into 4 
distinct Fundamental Heart Sounds (FHS) states, namely 
S1, systole, S2 and diastole. This segmentation is 
performed using the algorithm of Springer et al. [2].  

(ii) Based on the FHS states, the heart sound recording 
is divided into multiple segments – each cardiac cycle in 
the recording will be represented by 4 individual 
segments corresponding to the 4 FHS states. All segments 
corresponding to the same FHS state are grouped into the 
same set.   

(iii) For each set, a fast Fourier transform is performed 
on each of these individual segments (see Figure 1). The 
power spectrum from the fast Fourier transform is then 
sorted in descending order.   

(iv) We compute the sums S_N, where S_N is the sum 
of the N highest peaks in the power spectrum. Ratios of 
S_N to the sum of the entire power spectrum are also 
computed. The mean and standard deviation (SD) of these 
ratios for each set are then used as additional features for 
classification. In this way, we have 2N *4 additional 
features (2N features for each FHS states) for each heart 
sound recording. The number of sums, N, can be 
optimized to increase the accuracy of the training 
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prediction. For this paper, we used two sums; N = 5 and 
N = 10 to compute the additional features, resulting in 16 
additional features. The definition of these 16 features are 
described in Section 2.1 below.  

(iv) A balanced dataset is selected from all training 
sets provided in this challenge. This is necessary as the 
number of abnormal and normal heart sound recordings 
in the training sets are unbalanced. Details of the 
distributions of the normal and abnormal heart sound 
recordings in the training sets are described in Liu et al. 
[3]. The power spectrum analysis and segmentation 
interval analysis are performed on this balanced dataset. 
Details of the segmentation interval analysis and the 
associated features are described in [3].  

(v) A feedforward neural network with regularization 
is trained using the combined features from both the 
power spectrum analysis and the segmentation interval 

analysis to perform normal and abnormal heart sound 
recording classification. The neural network used for our 
classification have the following architecture: Input layer: 
36 nodes, Hidden Layer: 10 nodes and Output layer: 2 
nodes. The training of the neural network is implemented 
as an optimization problem in MATLAB [4].   

2.1. Power spectrum feature definition 

There are 16 features that are computed from the 
power spectrum analysis described in the section above. 
Let R1 be defined as the ratio of S_5 (S_5 is the sum of 
the 5 highest peaks in the power spectrum) to the sum of 
the entire power spectrum for a particular segment. 
Similarly, let R2 be defined as the ratio of S_10 to the 
sum of the entire power spectrum for a particular 
segment. The detailed definition of the 16 features are as 

Figure 1. Illustration of the power spectrum analysis for a sample heart sound recording. Top panel: Overlaid of the 
heart sound recording with the FHS state labels (S1, systole, S2 and diastole) generated using the segmentation 
algorithm of Springer et al. [2]. For each cardiac cycle, the heart sound recording is divided into 4 segments (example 
of such segments in 1 typical cardiac cycle are represented by the colored rectangles above) corresponding to the 4 
FHS.  Bottom panel: Power spectrum analysis for 1 typical cardiac cycle. For each segment, we perform a fast Fourier 
transform to compute the power spectrum. These power spectrums are then used to compute the corresponding sums 
S_N.  

 

 

  



follows: 

1. m_S1_r1: mean value of R1 ratios for all S1 segments
2. sd_S1_r1: SD of R1 ratios for all S1 segments
3. m_S1_r2: mean value of R2 ratios for all S1 segments
4. sd_S1_r2: SD of R2 ratios for all S1 segments
5. m_Sys_r1: mean value of R1 ratios for all systolic
segments 
6. sd_Sys_r1: SD of R1 ratios for all systolic segments
7. m_Sys_r2: mean value of R2 ratios for all systole
segments 
8. sd_Sys_r2: SD of R2 ratios for all systolic segments
9. m_S2_r1: mean value of R1 ratios for all S2 segments
10. sd_S2_r1: SD of R1 ratios for all S2 segments
11. m_S2_r2: mean value of R2 ratios for all S2 segments
12. sd_S2_r2: SD of R2 ratios for all S2 segments
13. m_Dia_r1: mean value of R1 ratios for all diastolic
segments 
14. sd_Dia _r1: SD of R1 ratios for all diastolic segments
15. m_Dia _r2: mean value of R2 ratios for all diastolic
segments 
16. sd_Dia _r2: SD of R2 ratios for all diastolic segments

Table 1 shows the average values for all 16 features for 
normal and abnormal heart sound recordings on the 
selected balanced dataset. A non-parametric test 
(Wilcoxon rank sum test) for features without normal 
distribution is performed to check for statistical 
differences between the two groups. For features with 
normal distribution, a parametric Student t-test is 
performed. In summary, 11 features are statistically 
different between the normal and abnormal groups.  

2.2. Regularization and validation 

To prevent the neural network from over-fitting to the 
training data, a regularization parameter (λ) is introduced. 
This regularization parameter modifies the objective 
function in the optimization of the neural network by 
penalizing large weights that are assigned to the nodes of 
the network. In order to select the optimal value for λ, a 
10-fold cross validation is performed on the balanced 
dataset for the following values of λ: 0.01, 0.03, 0.05, 
0.08, 0.1, 0.3, 0.5, 0.8, 1.0, 1.5, 2.0, 3.0, 3.5, 4.0, 4.5 and 
5. The mean of the overall score across the 10-fold on the
test set is used as a criterion to select λ (see Figure 2 and 
Table 2). 

3. Results and discussion

The 10-fold cross validation results for our neural 
network classification (for λ = 1.5) on the balanced 
dataset are shown in Table 2.  We obtained a score of 
0.90 ± 0.01 (0.73 ± 0.03) on the training (test) set 
averaged across the 10-fold. For the testing dataset on the 

challenge website, our approach achieved the following 
score for a random subset: Sensitivity = 0.747, 
Specificity = 0.788 and Overall = 0.767 

Potential approaches to further optimize the 
performance of our neural network classification includes 
the following: (i) increasing the number of sums (S_N) 
used for computing the power spectrum features, (ii) 
modifying the values of N to either include or decrease 
the number of peaks used to compute the power spectrum 
features, and (iii) removing features that are not 
statistically different across the abnormal and normal 
heart sound recordings. 

4. Limitations

The accuracy of our neural network classification is 
heavily dependent on the accuracy of the FHS state 
segmentation algorithm. This is because the power 
spectrum analysis requires the division of the heart sound 
recording into the 4 distinct FHS state. It is possible that 
the default parameters in the algorithm of Springer et al. 
[2] may not be optimized for certain recordings. Further 
optimization of the parameters used for FHS 
segmentation may potentially improve the accuracy of 
our approach. 

Figure 2. Selection of regularization parameter (λ) for the 
neural network. The overall score (mean ± standard 
deviation) averaged across the 10-fold is plotted against the 
values of λ in a semi-log plot. As λ increases from 0.01 to 
1.5, the score on the training (test) set decreases (increases) 
as over-fitting is penalized. For values of λ greater than 1.5, 
the score on the test set remains fairly constant while the 
score on the training set continue decreasing. Hence, we 
choose λ = 1.5 as the optimal regularization parameter for 
our neural network. 

 

 

  



5. Conclusion

We have shown that the additional features derived 
from power spectrum analysis can be used successfully 
for the classification of heart sound recordings. Our 
approach relies on the fast Fourier transform of segments 
corresponding to the 4 FHS states in the heart sound 
recording to compute these additional features. These 
additional features are combined with the features 
computed from the segmentation interval analysis and 
used to train a feedforward neural network with 
regularization. This neural network is then used for 
classification of heart sound recording.  
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Table 1: Comparison of the features derived from power spectrum analysis between the abnormal and normal 
heart sound recording from the balanced dataset. Values are presented as mean ± standard deviation.  

Features Abnormal Normal P-value 

S1 

m_S1_r1 0.851 ± 0.121 0.829 ± 0.125 < 0.01 
sd_S1_r1 0.060 ± 0.030 0.052 ± 0.028 < 0.01 
m_S1_r2 0.952 ± 0.080 0.947 ± 0.072 < 0.01 
sd_S1_r2 0.026 ± 0.024 0.025 ± 0.025 0.31 

Systolic 

m_Sys_r1 0.774 ± 0.164 0.737 ± 0.190 < 0.01 
sd_Sys_r1 0.086 ± 0.039 0.084 ± 0.047 0.54 
m_Sys_r2 0.892 ± 0.121 0.859 ± 0.134 < 0.01 
sd_Sys_r2 0.056 ± 0.040 0.063 ± 0.047 < 0.05 

S2 

m_S2_r1 0.859 ± 0.118 0.824 ± 0.121 < 0.01 
sd_S2_r1 0.064 ± 0.033 0.059 ± 0.031 < 0.05 
m_S2_r2 0.953 ± 0.070 0.943 ± 0.061 < 0.01 
sd_S2_r2 0.029 ± 0.026 0.030 ± 0.026 0.15 

Diastolic 

m_Dia_r1 0.624 ± 0.192 0.612 ± 0.220 0.12 
sd_Dia _r1 0.097 ± 0.041 0.087 ± 0.037 < 0.01 
m_Dia_r2 0.776 ± 0.170 0.753 ± 0.180 < 0.05 
sd_Dia _r1 0.080 ± 0.041 0.077 ± 0.042 0.25 

Table 2: K=10-fold cross validation results for λ = 1.5 performed on the balanced dataset: 472 abnormal and 
472 normal heart sound recordings. Se: sensitivity, Sp: specificity, Std: standard deviation.  

Training Validation 
Fold Se Sp Score Se Sp Score 

1 0.89 0.89 0.89 0.83 0.60 0.71 
2 0.91 0.91 0.91 0.74 0.70 0.72 
3 0.90 0.90 0.90 0.72 0.81 0.77 
4 0.90 0.90 0.90 0.57 0.74 0.66 
5 0.89 0.90 0.89 0.75 0.77 0.76 
6 0.92 0.91 0.91 0.81 0.72 0.77 
7 0.90 0.89 0.90 0.70 0.68 0.69 
8 0.89 0.91 0.90 0.77 0.68 0.72 
9 0.90 0.88 0.89 0.70 0.79 0.74 

10 0.90 0.92 0.91 0.73 0.75 0.74 
Mean 0.90 0.90 0.90 0.73 0.72 0.73 
SD 0.01 0.01 0.01 0.07 0.06 0.03 
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