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Abstract 

Human induced pluripotent stem cell-derived 
cardiomyocytes (hiPSC-CMs) are characterized by an 
extreme variability, which cannot be reproduced by a 
single in silico model. Here we present a population of 
hiPSC-CM models, calibrated using six different 
experimental datasets. By sampling the maximum 
conductances of 11 ionic currents, 10000 parameter sets 
were obtained. The experimental data-based calibration 
selected 1355 in silico models to be included in the final 
population. Such population reproduces the experimental 
data variability and it is used to assess the different 
responses to a 90% IKr block. Three different profiles 
emerged: models still normally beating (562), action 
potentials with EADs (336) and repolarization failures 
(457). The models still beating after 800 s since IKr block 
showed a mean ∆APD90 of 723±12 ms. We observed 
significant differences among these three classes in the 
maximum conductances of ICaL, IKr, IKs, IK1, INaCa and INaK, 
supporting the idea that hiPSC-CM belonging to the same 
control population can however show dramatically 
different responses to an external perturbation, due to the 
physiological variability. This has to be taken in proper 
consideration in the perspective of using hiPSC-CMs for 
safety pharmacology assays. 

1. Introduction

During the last decade, the potential of human induced 
pluripotent stem cell-derived cardiomyocytes (hiPSC-
CMs) has been remarked for many different applications, 
ranging from regenerative medicine, to personalized 
medicine, to drug tests. The potential of hiPSC-CMs for 
drug testing was acknowledged also in the new 
Comprehensive In vitro Proarrhythmia Assay (CiPA) 
paradigm for drug safety testing. In fact, CiPA aims to 
combine in vitro (hiPSC-CMs) and in silico 
(computational models of cardiac cells) technologies to 
overcome the limits of the current safety pharmacology 

paradigm (i.e. the focus on hERG channel block in vitro 
and the QT prolongation in vivo) [1]. However, the use of 
hiPSC-CMs poses new challenges, e.g. differences 
compared to adult cardiac [2] cells and the extreme 
variability of the experimental data. hiPSC-CMs 
variability represent a big challenge, as shown by plethora 
of in vitro datasets published during the last five years. 
Recently, a hiPSC-CM in silico model was proposed 
(Paci2015) [2,3], but due to its intrinsic development, it 
cannot capture the hiPSC-CM variability since i) it 
reproduces the average behaviour of an in vitro hiPSC-
CMs population and ii) such population refers to a single 
dataset [4]. The aim of this paper is tackling the hiPSC-
CMs variability issue in silico, using the new “population 
of models” (POM) paradigm [5]. In detail, we aim to 
overcome the limits of the Paci2015 model and capture 
the variability observed in literature, with particular focus 
on the effects of a strong block of IKr, which has been 
reported to induce Early After Depolarizations (EADs), in 
some cells but not in others. E.g. in [4] only three out of 
five cells showed EADs, but the Paci2015 model did not 
simulate such phenomenon. 

2. Methods

The POM paradigm consists in two separate steps: i) 
the generation of a first population of in silico models, by 
sampling the parameters of interest and ii) calibrating the 
first population using the available experimental data, 
thus discarding those model which are not in agreement 
with the experimental evidences. We followed these two 
steps to obtain an in silico hiPSC-CM population, which 
is then used to test a strong blockade of IKr. 

2.1. Parameter sampling and model 
generation 

The first population was generated using the Paci2015 
model and sampling the maximum conductances of 11 
currents: fast and late Na+ (INa and INaL), L-type Ca2+ 
(ICaL), funny (If), transient outward K+ (Ito), rapid and 
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slow delayed rectifier K+ (IKr and IKs), inward rectifier K+ 
(IK1), Na+ - Ca2+ exchanger (INaCa), Na+ - K+ pump (INaK) 
and sarcolemmal Ca2+ pump (IpCa). The only change in 
the Paci2015 model is a speeded up ICaL recovery from 
inactivation (time constants x 0.4), to stress the 
arrhythmogenic phenomena. The sampling technique is 
the Latin Hypercube Sampling (LHS) [5], which allows 
an even sampling of the parameter spaces. LHS produced 
10000 sets of 11 coefficients each, ranging in [0.5, 2] 
which were used to modulate the aforementioned 11 
currents, thus generating a first population of 10000 
hiPSC-CM models. Simulations were run for 800 s to 
drive the models to the steady state. 

2.2. Calibration of the first population 

To calibrate the hiPSC-CM population, we used six 
datasets of spontaneous action potentials (APs) available 
in literature, namely Ma2011 [4], Moretti2010 [6], 
Ma2013 [7], Fatima2013 [8], Lahti2012 [9] and 
Kujala2012 [10], where biomarkers such as AP duration 
(APD), maximum diastolic potential (MDP) and rate of 
spontaneous beating (RATE) where reported in terms of 
mean (µ) and standard error (SEM). For each biomarker 
we consider the biomarker space as µ ± 2 standard 
deviations (σ), hypothesizing a uniform distribution. Due 
to the variability of the datasets, we joined them together 
in a conservative way, i.e. considering as lower and upper 
bounds for each biomarker the smallest and the biggest 
among the six datasets, respectively (Table 1). Not 
meaningful bounds (e.g. negative RATE or APD) were 
set to 0. In order for a model to be included into the final 
population, every biomarker must be included in the 
aforementioned biomarker spaces. Since we focused on 
spontaneously beating in silico models, we introduced 
two more conditions than in [5] to accept a model into the 
final population: i) the model must generate spontaneous 
APs and ii) the intracellular ionic concentrations must be 
5≤[Na+]i≤15 mM and 0≤[Ca2+]SR≤5 mM. 

2.3. IKr block 

To assess the behaviour of the in silico hiPSC-CM 
population we tested an extreme IKr block (90%) for 800 s 
starting from the models’ steady states. 

3. Results

3.1. The hiPSC-CM population 

Out of the 10000 hiPSC-CM models generated by 
sampling, only 1355 were accepted in the final population 
after calibration. A global view of the hiPSC-CM 
population is reported in Figure 1, while the biomarker 
variability is reported in Table 1. In Figure 2  we  show 

Figure 1. Accepted and rejected APs after calibration. 
APs upstrokes were aligned and APs were plotted from 
one MDP to the next one. 

Table 1. Biomarkers of the accepted hiPSC-CM models. 
The lower (LB) and upper (UB) bounds for each 
biomarker are reported in bold. Only models whose 
biomarkers are all included in [LB, UB] are accepted in 
the final population. 

Biomarker LB UB µ σ 
Rate (bpm) 0 209 54 12 
MDP (mV) -89 -44 -76 2 
Peak (mV) 17 58 35 8 
APA (mV) 76 139 111 9 
VMax (V/s) -27 82 35 22 
APD10 (ms) 20 128 69 26 
APD20 (ms) 0 290 146 44 
APD30 (ms) 59 301 220 53 
APD50 (ms) 0 601 301 69 
APD70 (ms) 146 631 343 78 
APD90 (ms) 1 705 384 84 

how the hiPSC-CMs population covers the biomarker 
spaces. 

3.2.  IKr block 

The 90% block of IKr on the 1355 hiPSC-CM models, 
generated three different profiles: 562 models with 
normal repolarization (REPO), 336 models showing 
EADs (EAD) and 457 which failed to repolarize 
(REPOFAIL). Three illustrative APs are reported in 
Figure 3. For the REPO models, the mean ∆APD90 
prolongation is (µ±SEM) 723±12 ms. To assess the  

 

 

  



Figure 2. Scatter plots showing biomarkers’ values for all 
the hiPSC-CM models (accepted – black dots; rejected – 
grey dots). Each dataset is here represented as a colored 
rectangle. The filled green rectangle represents the overall 
space of the acceptable biomarker values. 

mechanisms underlying the occurrence of arrhythmias, 
we compared the ionic currents among the three classes. 
Significant differences were identified for ICaL, IKs, IKr, 
IK1, INaCa and INaK, as shown in Figure 4. 

4. Discussion and conclusions

In this paper, we presented a new application of the POM 
paradigm: generating a population of hiPSC-CM in silico 
models. Our study shows that in a context of extreme 
variability of the experimental data (Figure 2) a single in 
silico model, although informative, results partially 
inadequate to capture the complexity of the 
electrophysiological behavior of a cellular type. In 
particular for safety pharmacology purposes, a population 
of hiPSC-CM models provides a more comprehensive 
picture on the responses to hiPSC-CMs to drugs. In spite 
of the fact that a prototypical block was here simulated, 
the responses of the population models were quite 
various: from the expected prolongation of APD, to the 
occurrence of EADs and repolarization failures. We 
ascribe such different behaviors to a different equilibrium 
of the ionic currents (in this case their maximum 
conductances), that in REPO models allow normal APs, 
but in the EAD and REPOFAIL models, are not able to 

Figure 3. AP comparison before and after 90% IKr block. 

withstand a strong block of IKr. The lower IKs and IK1 
expression level does not surprise. In conditions of almost 
completely blocked IKr, IKs is expected to compensate the 
APD prolongation: the REPO models have the greatest 
IKs. In cells like hiPSC-CMs, characterized by a smaller 
IK1 compared to adult cells, an even smaller IK1 can hardly 
stabilize the membrane potential before the next AP. 
Similar considerations can be made for INaK, outward 
current which is greater in REPO cells, and INaCa, which is 
an inward current during the repolarization thus 
destabilizing it in EAD and REPOFAIL cells. On the 
other hand, the stronger IKr in EADs and REPOFAIL, 
compared to REPO, made us speculate on the fact that in 
models where IKr is highly expressed, a 90% block can 
have more dramatic effects than in cells where IKr is 
smaller. The significance of ICaL in the EAD class can be 
due to the fact that EADs are generated by reactivation of 

 

 

  



ICaL upon APD prolongation due to IKr block. The number 
of repolarization abnormalities depends also by the 
speeded up ICaL recovery from inactivation. In conclusion, 
POM overcomes the limitations of traditional models and 
makes in silico modeling even more suitable for safety 
pharmacology assays. Moreover, we identified the ionic 
currents affecting the most the development of 
arrhythomgenic phenomena consequent to a hERG block. 
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Figure 4. Distribution of the maximum currents for the 11 sampled currents. Filled boxplots represents statistically 
significant differences (p-value < 0.01) compared to the REPO class. 
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