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Abstract

Atrial fibrillation (AF) is the most commonly experi-
enced sustained arrhythmia, and it increases risks of stroke
and congestive heart failure. Unobtrusive wearable solu-
tions with photoplethysmography (PPG) have been pro-
posed for AF detection and the performance has been
mainly evaluated for short-term measurements in con-
trolled measurement settings. In this study, we evaluate the
predictive value of features from PPG for AF detection un-
der both hospital and free-living conditions. PPG from the
wrist was measured from 18 patients before and after car-
dioversion and from 16 patients (4 with 100% AF) for 24
hours. Single-lead ECG and 24-hour Holter were used re-
spectively as gold standards. Six PPG-based inter-beat in-
terval (IBI) variability and irregularity features were com-
puted in three different sliding time windows. Thresholds
for AF classification for every individual feature were de-
termined with the data from the hospital conditions and
tested with the measurements from free-living conditions.
Overall, the best classification results were obtained by us-
ing a 120-s window, pNN40 resulting as the best feature.
On average, the sensitivity was higher in the hospital con-
ditions (92.3% vs. 71.6%) and the specificity higher in the
free-living conditions (60.7% vs. 84.9%). In conclusion,
testing the classification perfomance in free-living condi-
tions is essential to properly evaluate AF detection models.

1. Introduction

Atrial fibrillation (AF) is the most commonly experi-
enced sustained arrhythmia and its prevalence increases
with age. The arrhythmia increases the risk of stroke to
five-fold and the risk of congestive heart failure to three-
fold. [1] Early diagnosis of AF has a great importance, es-
pecially for the prevention of stroke. However, AF can be
asymptomatic and therefore can remain undiagnosed. For

detecting paroxysmal events, long-term or frequent moni-
toring is needed.

A measurement technique suitable for unobtrusive long-
term monitoring is photoplethysmography (PPG). PPG
is an optical measurement, which records blood volume
changes in the vascular bed of the tissue, enabling extrac-
tion of cardiovascular parameters, such as heart rate.

PPG-based solutions intended eventually for long-term
monitoring purposes have been proposed for AF detection
based on features determining the irregularity or variabi-
lity of the inter-beat intervals (IBIs) [2–4]. However, the
results in these studies have been reported only on short-
term recordings up to 10 minutes. We previously showed
that a Markov model could predict AF in free-living con-
ditions using PPG data [5]. During continuous long-term
monitoring the measurements are more prone to noise and
the feature values might be less accurate compared to the
short-term setting. In addition, different solutions are us-
ing different time windows for the feature computation.
In this paper, we evaluate the most common irregularity
and variability features for IBIs with three different win-
dow lengths, in both a hospital condition before and after
an electrical cardioversion procedure, and in a free-living
condition during 24-hour measurements.

2. Data

The data for the study were recorded in two different set-
tings in Eindhoven, The Netherlands: before and after an
electrical cardioversion (CV) procedure in the hospital and
in 24-hour measurements in free-living conditions. The
study was approved by the local medical ethical commit-
tee and every patient provided written informed consent
before participating. An overview of the datasets is pre-
sented in Table 1. During 24-hour measurements, patients
either had 100% AF (4 patients) or no AF.
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Table 1. Datasets
Number Males Age (y) Total rec. Total rec.

of (%) (m± sd) length, non-AF length, AF
patients (hh:mm) (hh:mm)

CV 18 56 75± 11 13:41 16:26
24h 16 63 65± 14 298:32 89:57

2.1. Measurements in hospital conditions

The measurements in hospital conditions were per-
formed in the department where patients are treated with
electrical cardioversion. 20 patients assigned for AF treat-
ment were included in this part of the study. The patients
were measured approximately one hour before and one
hour after the procedure with PPG and accelerometer sen-
sors at the wrist with a data logging device equipped with
the Philips Cardio and Motion Monitoring Module (CM3
Generation-3, Wearable Sensing Technologies, Philips,
Eindhoven). As a reference, a single-lead electrocardio-
gram (ECG) was measured from the chest with Actiwave
Cardio (CamNtech Ltd., Cambridge, United Kingdom). At
the beginning and at the end of the recording a synchro-
nization protocol was performed by shaking both devices
simultaneously.

The rhythm before and after the procedure was evalua-
ted by a clinical expert by looking at the ECG. Figure 1
shows an example of 30 s of PPG signal and correspond-
ing IBIs before and after the cardioversion. Two patients
with unsuccessful cardioversion were excluded from fur-
ther analysis to include only patients with both AF and
regular rhythm. Baseline characteristics and medication
information of the patients were collected afterwards from
the patient record.

2.2. Measurements in free-living condi-
tions

The measurements in free-living conditions were per-
formed in 16 patients assigned for a 24-hour Holter ex-
amination. PPG and accelerometer data were measured at
the non-dominant wrist with the same wrist-wearable de-
vice as in the hospital conditions. The ECG was recorded
with a 12-lead Holter monitor (H12+, Mortara, Milwau-
kee, WI, USA). The Holter monitor was attached first to
the patient by following normal hospital procedures and
a synchronization protocol was performed by tapping the
wrist-wearable device and pressing the event button on
the Holter simultaneously. The same procedure was per-
formed when the patient arrived at the hospital the follow-
ing day to return the devices. During the measurement pe-
riod, patients were keeping a diary of their activities, com-
plaints, and medication. The diary was handed in at the
time when the measurement ended.

The ECG recordings were analyzed by trained analysts,
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Figure 1. 30-s segments of PPG and corresponding IBIs
before the cardioversion (above) and after the cardiover-
sion (below) for a representative patient.

supported by software (Veritas, Mortara, Milwaukee, WI,
USA) that automatically detects the time and type of the
beat. Every heart beat in the ECG was labelled either as si-
nus rhythm, AF, premature supraventricular or ventricular
contraction, artifact, or unknown. The output of the soft-
ware was verified or corrected by the analysts. In addition,
baseline characteristics and medication intake information
were collected.

3. Methods

The goal of the analysis was to compare features de-
scribing irregularity or variability of IBIs and the ability
of the features to classify the rhythm as AF and non-AF
in the measurement settings described in Section 2. Be-
fore starting the feature computation, the PPG was filtered
with a 0.3 Hz high-pass filter and a 5 Hz low-pass filter.
Heart beats were detected from the PPG pulses and after
the pulse extraction, the beat information in PPG and ECG
were aligned. The IBIs from PPG were computed as time
differences between two consecutive pulses.

3.1. Features

For feature computation, outlier removal was made
based on IBI length and IBIs< 200 ms and> 2200 ms
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were discarded. The features expressing variability or ir-
regularity of the IBI sequence studied were Root Mean
Square of Successive Differences (RMSSD), Shannon En-
tropy (ShE), the percentage of interval differences of suc-
cessive intervals greater than 40 ms (pNN40) and greater
than 70 ms (pNN70), and Sample Entropy (SampEn). 40
ms and 70 ms were selected based on Corino et al. [4]
where the combination of the two features was found to
be the most discriminative feature combination for AF.

ShE is a measure that has been successfully used to
quantify the irregularity of IBI sequences during AF [2,6].
For calculating the entropy, first the probability distribu-
tion of the IBIs is computed assigning the intervals to fixed
number of bins with equal size. The probablity of the IBI
to fall in the bini is

p(i) =
n(i)

l − noutliers

, (1)

wheren(i) is the number of IBIs that fall in the bini, l the
total number of IBIs in the window, andnoutliers the num-
ber of IBIs considered as outliers. When the probabilities
for every bin are known, ShE is

ShE= −

N∑

i=1

p(i)
log(p(i))

log(N)
. (2)

N is the number of bins and was selected to beN = 16,
which is the minimum number of bins to obtain a reason-
able accuracy [6].

SampEn evaluates similar patterns in the time series and
a lower value indicates more self-similarity in the time se-
ries. In detail, SampEn is the negative natural logarithm
of the conditional probability that two sequences similar
to each other atm points are similar also atm + 1 points.
SampEn was computed according to [7]

SampEn= −ln(A/B) = −ln(A) + ln(B), (3)

whereA is the number of similar sequences of lengthm+1
andB the number of similar sequences of lengthm within
tolerancer. Two SampEn features were generated by set-
ting m equal to 1 and 2 (SampEn1 and SampEn2), andr
equal to 0.25 times the standard deviation of the series as
in [4].

The features were computed in three different window
lengths: 30 s, 60 s, and 120 s, by sliding with 30 s.

3.2. Performance metrics

The statistical measures used to assess the predic-
tive value of the features were sensitivity (Sens =
TP/(TP+FN)), specificity (Spec = TN/(TN+FP)), and ac-
curacy (Acc = (TP+TN)/(TP+FP+TN+FN)), where TP is
the number of true positives, TN true negatives, FP false
positives, and FN false negatives.

3.3. Cross-validation

The measurements in the hospital conditions were con-
sidered to be more controlled because of their shorter du-
ration and the patients were in supine position during the
entire measurement period. Therefore, the hospital dataset
was used as a training set for defining the thresholds for
every individual feature for every window length. This was
done with a stratified leave-one-out cross-validation. One
patient was held as a test data and the set of remaining pa-
tients was used to define the threshold which would give
an optimum cut-off point on the receiver operating charac-
teristic curve according to Youden’s index. The procedure
was repeated 18 times leaving each patient for testing one
time.

The classification to AF and non-AF in the free-living
conditions was based on the thresholds defined with the
dataset in the hospital conditions. The mean of the thres-
holds of the cross-validation were selected as the final ones
for every feature and window length.

4. Results

Table 2. Sensitivity and specificity in the hospital
Feature 30 s 60 s 120 s

Sens Spec Sens Spec Sens Spec
ShE 89.1 54.3 89.1 53.9 88.9 54.5
RMSSD 88.2 44.7 87.9 44.9 88.5 44.2
pNN40 93.5 64.6 94.7 63.9 97.1 66.0
pNN70 91.1 61.1 95.7 59.4 93.9 60.2
SampEn1 86.1 63.6 85.4 68.3 93.2 67.4
SampEn2 88.0 57.5 89.2 66.4 92.3 71.7
Mean 89.3 57.7 90.3 59.5 92.3 60.7

The sensitivity and specificity of the AF classification in
the hospital conditions for every window length are pre-
sented as mean values over all patients in Table 2 and ac-
curacy is presented in Table 3. The standard deviation for
sensitivity varied between 5.5–25.7%, for specificity be-
tween 17.5–41.5%, and for accuracy between 11.4–19.7%.
The highest sensitivity (97.1%) and the highest accuracy
(83.8%) were obtained with pNN40 and the highest speci-
ficity was with SampEn2 (71.7%) with a 120-s window.

Table 3. Accuracy in the hospital conditions
Feature 30 s 60 s 120 s
ShE 73.4 73.2 73.4
RMSSD 68.4 68.4 68.4
pNN40 83.8 81.5 83.8
pNN70 80.7 79.9 79.1
SampEn1 75.3 76.4 80.9
SampEn2 74.7 77.8 82.3
Mean 76.1 76.2 78.0

The results for the free-living conditions were calculated
only in terms of sensitivity and specificity, and are listed
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in Table 4. The standard deviations for sensitivity ranged
between 9.5–13.8% and for specificity 2.8–13.3%. The
highest sensitivities were obtained with a 120-s window
and were similar for all the features ranging from 69.0% to
72.7%. pNN40 was the feature with the highest specificity
(94.3%). Accuracy was not computed due to having only
four patients with AF and 12 without AF in the dataset.
The accuracies would not be comparable to the accuracies
in the hospital dataset which is more balanced.

Table 4. Sensitivity and specificity in free-living
Feature 30 s 60 s 120 s

Sens Spec Sens Spec Sens Spec
ShE 40.0 96.1 60.5 92.5 72.3 89.3
RMSSD 40.0 87.8 60.3 82.8 72.4 78.7
pNN40 40.1 96.5 60.3 95.1 72.3 94.3
pNN70 40.3 96.3 60.7 93.8 72.7 93.1
SampEn1 37.7 78.0 57.1 78.9 70.7 76.5
SampEn2 35.9 73.7 55.7 76.1 69.0 77.6
Mean 39.0 88.1 59.1 86.5 71.6 84.9

5. Discussion

This is the first study evaluating features for variabi-
lity and irregularity of IBIs both in hospital and free-living
measurement conditions. When comparing the sensitivity
and specificity, the results showed a difference between
the two conditions. On average, e.g. with 120-s window
length, the sensitivity was higher in the hospital conditions
(92.3%) compared to the free-living conditions (71.6%).
The specificity, on the contrary, was higher in free-living
(84.9%) than in the hospital (60.7%).

In addition to different measurement conditions, the dif-
ferent patient profiles might cause differences in the per-
formance. In hospital conditions, after the electrical car-
dioversion there might still be irregularities, such as pre-
mature contractions, present in the rhythm. Five patients
experienced a large number of irregulaties after the pro-
cedure which explains the low mean specificity and the
high standard deviation of specificity (up to 41.5%). In
free-living conditions, the density of premature contrac-
tions was lower on average which might explain the higher
specificity.

The thresholds for the features were trained with the
data recorded in the hospital. A large amount of irregulari-
ties in the non-AF group in the data set might have caused
the thresholds to be higher than optimal thresholds for the
free-living conditions causing the sensitivity to drop.

In free-living conditions, sensitivity improved signifi-
cantly when increasing the window length. Specificity
did decrease, but to a smaller extent. This indicates that
a longer window length gives better classification results.
This was expected, because the type of features used in this
study become more reliable with more data. Interestingly,

in the hospital conditions the window length did not seem
to influence significantly the classification performance.

6. Conclusion

The classification performance of the PPG-derived fea-
tures changed between the hospital and free-living condi-
tions. Thus, testing the classification performance in free-
living conditions is essential to properly evaluate AF de-
tection models.
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