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Abstract

This study presents a detailed comparison between the
Method of Fundamental Solutions (MFS) approach to
solving the inverse problem of electrocardiology and a
more conventional boundary element method (BEM) ap-
proach.

Synthetic data were created to simulate the heart sur-
face potential distribution during the time course of nor-
mal and ectopic heart beats. Both measurement and geom-
etry noise were added to the data and the inverse problem
was solved via both methods. Under these conditions sev-
eral regularisation parameter determination methods were
compared, with the Robust Generalised Cross-Validation
(RGCV) method consistently performing better than any
other method for both MFS and BEM approaches.

The MFS approach to solving the inverse problem of
electrocardiology can sometimes yield more accurate re-
sults than the BEM approach, especially when the regu-
larisation parameter is determined by RGCV, but BEM is
generally superior.

1. Introduction

To solve the inverse problem of electrocardiology, we
first need to solve the forward problem of electrocardiol-
ogy. That is, we solve Laplace’s equation for the electric
potential in the torso, ¢,

V:-cVp=0, xe (1

subject to a given potential distribution h(x) on the heart
surface,

¢ =h(x) xeTy, @
and assuming the body surface is insulated,
(0Vp) - n=0 xeTlr, 3)

where I';, and ' are the heart and body surfaces, respec-
tively, o is the conductivity tensor within the torso, {2, and
n is the outward pointing surface normal.
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Here, we will solve the forward problem via the bound-
ary element method (BEM) [1] and the Method of Fun-
damental Solutions (MFS) [2]. Both solution approaches
reduce the forward problem to a matrix—vector equation.
Concomitant solutions to the inverse problem will be com-
pared using synthetic data generated during the QRS com-
plex for normal and ectopic heart beats. Since the inverse
problem is ill-posed for both solution methods, although
in different ways, Tikhonov regularisation is required to
determine the inverse solution. We also compare a range
of regularisation parameter determination methods for ob-
taining the inverse solutions.

2. Methods
2.1. The Boundary Element Method

The BEM is a boundary method for solving Laplace’s
equation that exploits the equation’s fundamental solution

1

" dar

f(r)

where r = ||x — y|| represents the distance between some
observation point x and some source point y. By using
Green’s theorem and carefully handling the singular inte-
grals that arise, the governing equation can be reduced to
the matrix—vector equation

“4)

Aph=bp ®)

where h is a vector of heart surface potentials on the mesh
points that represent an approximation to the heart sur-
face, bp is a vector of body surface potentials, measured
at certain sites on the torso surface, and A g is the forward
transfer matrix [3]. Typically, the number of heart surface
nodes, My, is less than the number of body surface nodes
Mr; hence equation (5) represents an overdetermined sys-
tem of linear algebraic equations.

2.2. The Method of Fundamental Solutions

The method of fundamental solutions (MFS) was intro-
duced in the late 1970s to solve boundary value problems
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of the form given by equations (1), (2) and (3). In par-
ticular, it has recently been applied to solving the inverse
problem of electrocardiology [4]. For this formulation, we
have equation (1), along with the insulation boundary con-
dition (3) and the new condition

¢(x) = m(x)

where I' ; represents points, say /N of them, where the po-
tential m(x) is measured (e.g. by a jacket). That is, both
Dirichlet and Neumann conditions are specified on the one
surface, and this is called a Cauchy Problem. Heart surface
potentials are determined in a “post-processing” step.

MES is also a boundary method, utilising the same
fundamental solution (4), but avoids singular integrals by
choosing a set of source points {y; } lying outside the com-
putational domain. Here, the source points will be created
by pushing the torso mesh points “outside” the torso and
shrinking the heart mesh points “inside” the heart. Solv-
ing Laplace’s equation via MFS assumes a solution of the
form

xel'yCcI'y (6)

M
— G
6(x) —co+; yo e ™

where M = My + Mpg.

Enforcing the conditions (3) and (6) results in a 2N X
(M + 1) system of algebraic equations for the coeffi-
cients [4] ¢j, 7 =1,..., M,

AMC:bM (8)

where c is a vector representing the unknown coefficients,
{c¢;j} and by is vector representing values of the Dirichlet
and Neumann conditions. Note that generally, 2N < M +
1, so the system is underdetermined.

2.3. Regularisation

Both methods described above result in a non-square
system of algebraic equations that must be solved. For
BEM, solution of the system of equations gives the heart
surface potentials, whereas for MFS, the system of equa-
tions gives a set of coefficients from which the heart sur-
face potentials can be obtained [4]. Both situations can
utilise zero-order Tikhonov regularisation to obtain a solu-
tion to the system of algebraic equations Ax = b:

min { [ Ax — b[}3 + A?[x3} ©)
giving
x = (ATA +X3T) " ATb. (10)

Here, )\ is a regularisation parameter and zero-order
Tikhonov regularisation has been assumed. The difficulty
with finding x is that ) is unknown.

Figure 1. Combined heart (red) and torso mesh.

Several methods have been developed to find an “opti-
mal” value for A, all relying on using a singular value de-
composition of the coefficient matrix A [5]. For this study
we will compare the L-Curve Method [6], the Compos-
ite REsidual and Smoothing Operator (CRESO) method
[7], the zero-crossing method (ZeroX) [8], the Generalised
Cross-Validation (GCV) [9], and the Robust Generalised
Cross-Validation Method (RGCV) [10]. Further details
about each of these methods can be found in the review
article [11].

2.4. Simulation Protocols

Detailed descriptions of the simulation protocols are
given elsewhere [8, 11], but briefly the torso model (fig-
ure 1) presented in [12] was used with a cellular automata
heart model [13] to produce a time course of the electric
potential for normal and ectopic heart beats. Both “white”
noise and geometry noise (by offsetting the heart) were in-
corporated into the simulated body surface potentials as
recorded on a “jacket” (figure 2) and inverse solutions ob-
tained. Simulations were performed at five different noise
levels, eight time points through the heart beat, each with
seven different heart offsets, giving a total of 280 scenarios
for both heart beats. Each scenario was re-run 20 times at
1%, 2%, 5% 10% and 20% noise levels. The MFS method
was implemented by moving the torso nodes 40mm out-
ward from the original surface and the heart nodes 10mm
inward.

Inverse solutions were compared in terms of the conven-
tional relative error and correlation coefficient measures

[11].
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(a) Front (b) Back
Figure 2. Front and rear views of the mesh with the large
dots indicating electrode positions.

3. Results

As one particular instance, Figure 3 shows the poten-
tial distributions obtained at 205ms through a normal heart
beat, with 1% measurement noise and the heart offset
10mm in the positive = direction. Panel (a) shows the in-
put distribution on 610 heart surface nodes and panel (b)
shows a sub-sample of the same distribution on 114 nodes
to enable comparison with the inverse solutions. The opti-
mal BEM solution is shown in panel (c) and optimal MFS
solution in panel (d). In this example, a lower relative error
and higher correlation coefficient is obtained with the MFS
method. Both BEM and MFS place the minimum of the
distribution at the same point, but the maxima are at sub-
stantially different positions. Also, the potentials recov-
ered from the MFS approach are overall lower than those
obtained from the BEM approach.

Tables 1 and 2 present a summary of the performance
of the regularisation parameter determination methods for
the BEM and MFS approaches, respectively. Both tables
show that the RGCV method most often produces the “bet-
ter” (in the sense of lowest relative error and highest corre-
lation coefficient) solution across the entire range of sim-
ulations considered, with the exception of the correlation
coefficient for MFS and the ectopic beat where the GCV
approach is slightly ahead. Again, from both tables it can
be seen that the RGCV method more often produces the
better solution for the normal beat than the ectopic beat.
It also produces more minimum relative errors than maxi-
mum correlation coefficients for BEM. Finally, a compari-
son of these two tables shows that RGCV more often pro-
duces the better solution with MFS than with BEM.

Based on the arguments above, the RGCV method was
chosen to compare inverse solutions from the BEM and
MFS methods. The results are presented in Table 3, along
with results obtained by using the optimal regularisation
parameter with both BEM and MFS. In most cases the
MES solution can only determine the better solution in
less than half the total number of simulations. Generally,

Max: 8.4 mV
Min: -18.0 mV

(a) Source

Max: 7.3 mV

(b) Reference

Max: 4.9 mV
Min: -10.2 mV

RE: 0.755
CC: 0.659

(c) Optimal BEM

Max: 4.3 mV
Min: -11.2 mV

RE: 0.731

CC: 0.688
J‘

Contour 1.0 m
RMS: 2.7 mV

(d) Optimal MFS

Figure 3. Optimal heart surface potential distributions
obtained 205ms through a normal heart beat. Each panel
shows the front and back views of the heart, the maximum
and minimum potentials, the contour interval and the root
mean square (RMS) value of the potential.
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Rel. Error Corr. Coeff.

Normal Ectopic | Normal Ectopic
RGCV 133 110 101 88
CRESO 26 27 36 39
GCV 10 11 26 12
L-Curve 56 85 74 83
ZeroX 55 47 43 58

Table 1. Number of times (out of 280) the indicated inver-
sion method obtained the lowest relative error or highest
correlation coefficient, respectively, for BEM.

Rel. Error Corr. Coeff.
Normal Ectopic | Normal Ectopic
RGCV 146 131 166 113
CRESO 50 44 44 38
GCV 38 90 58 116
L-Curve 31 14 12 11
ZeroX 15 1 — 2

Table 2. Number of times (out of 280) the indicated inver-
sion method obtained the lowest relative error or highest
correlation coefficient, respectively, for MFS.

MES yields more better solutions from the ectopic beat
than from the normal beat. However, when the RGCV
method is used with MFS, the proportion of better solu-
tions increases, as compared with the optimal solutions.

4. Discussion

This study has compared the inverse solutions obtained
from the MFS with those obtained from the BEM under
several scenarios. While the MFS is more straightforward
to implement, the BEM more often produces better solu-
tions. In one particular example (Figure 3) MFS yields a
lower relative error and higher correlation coefficient than
BEM. However, it could be argued that the BEM solution
is visually more accurate than the MFS solution.

One aspect of MFS that was not studied here was the
creation of the new source points. This certainly does af-
fect the accuracy of the solution method, and hence the
quality of the inverse solutions.

It would appear that there is a trade-off here between
ease of implementation and accuracy. Further comparison

Rel. Error Corr. Coeff.
Normal Ectopic | Normal Ectopic
Optimal 89 129 109 117
RGCV 118 146 104 120

Table 3. Number of times (out of 280) MFS solution is
“better” than BEM solution.

studies are certainly worthy of consideration.
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