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Abstract

Five time series which are known to be modulated by

respiration are derived from the pulse photoplethysmo-

graphic (PPG) signal, and they are analyzed for obstruc-

tive sleep apnea (OSA) detection: Pulse rate, amplitude,

and width variabilities (PRV, PAV, and PWV, respectively),

pulse upslopes, and slope transit time (STT). A total of

26 polysomnographic recordings were split in 1-min seg-

ments which were manually labeled as OSA (653 seg-

ments), normal breathing (7204 segments), or other pul-

monary events. For each one of the 5 PPG-derived se-

ries, 4 features were extracted: the standard deviation, the

power at high and low frequency (PLF) bands, and the

normalized PLF. These 20 features were used as input of

a least-squares support vector machine classifier using an

RBF kernel. Results show an accuracy of 72.66%, suggest-

ing that the analyzed features are promising for the detec-

tion of OSA from only the PPG signal.

1. Introduction

Obstructive sleep apnea (OSA) syndrome remains the

most common type of sleep-disordered breathing. It con-

sists of repetitive periods of upper airway occlussion dur-

ing sleep interrupting the airflow to the lungs. An arousal

is generated by the autonomic nervous system (ANS) in or-

der to restore respiration, but at the same time, the arousal

disturbs the sleep. These episodes may occur hundreds of

times in a single night having severe health implications

including hypersomnolence, excessive daytime sleepiness,

insomnia, nocturia, memory loss, attention deficit, and de-

pression [1]. Moreover, OSA symdrome is associated with

an increased risk of cardiovascular events such as coronary

artery disease, myocardial infarction, and stroke [2].

The diagnosis of OSA syndrome in adults is based on

a complete overnight recording known as polysomnogra-

phy or polygraphy, depending on the recording of the elec-

troencephalogram or not. However, it remains a very ex-

pensive procedure as it requires specialized equipment, ex-

pert personnel, and many sensors reducing the comfort of

the patient and affecting physiological sleep.

Different alternatives have been proposed, aimed to re-

duce costs, invasiveness, and/or to make the process more

convenient for ambulatory scenarios. Some of these alter-

natives are based on the electrocardiogram (ECG), often

combining features based on heart rate variability (HRV)

for quantifying the ANS dynamics with other features re-

lated to respiration [1]. Other alternatives are based on the

pulse photoplethysmographic (PPG) signal which also of-

fers ANS information through pulse rate variability (PRV)

and it is also affected by some respiratory modulations [3].

The PPG signal can be recorded by a pulse oximeter which

is widely used in the clinical routine for measuring the pe-

ripheral oxygen saturation (SpO2) while being a simple,

low-price, and comfortable sensor and therefore particu-

larly interesting for sleep studies. Because of the above

mentioned issues, the PPG-based methods for OSA detec-

tion usually use also features extracted from SpO2. How-

ever, not all apnea events lead to an oxygen desaturation

event, so some methods based only on PPG signal have

also been proposed [4–6].

Pulse rate, amplitude, and width variability (PRV, PAV,

and PWV, respectively) are 3 series derived from the PPG

signal which have been studied for respiratory rate esti-

mation [3]. Other PPG series which have been related to
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respiration are the pulse upslope [7] and the slope transit

time (STT) [8]. In this paper, the potential for discriminat-

ing OSA from normal breathing (NB) of PRV, PAV, PWV,

pulse upslope, and STT is studied.

2. Methods

2.1. Data and signal preprocessing

A data set containing 26 polysomnographic recordings

performed at University Hospital Leuven (UZ Leuven)

was used. These recordings included PPG signals recorded

from index finger at a sampling rate of fs = 500 Hz by

a Nonin WristOx2 3150. Respiratory events were anno-

tated by experienced personnel of UZ Leuven according

to the 2012 American Academy of Sleep Medicine criteria

(AASM12) [9]. As in [1], recordings were split in 1-min

segments which were labeled as OSA, NB, or other pul-

monary events based on the previously mentioned annota-

tions. Only OSA and NB segments were analyzed in this

study.

For PPG preprocessing, a low-pass filter with a cut-off

frequency of 35 Hz was applied. For the ith PPG pulse, the

apex point (nAi
) was detected by an algorithm based on a

low-pass derivative filter and a time-varying threshold [5].

Basal point (nBi
) which corresponds to the minimum pre-

vious to nAi
, and medium point (nMi

) defined as the time

instant when PPG pulse reaches half of its amplitude, were

also automatically determined as in [5]. Furthermore, the

onset (nOi
) and end points (nEi

) were detected by an algo-

rithm based on the first derivative [3].

2.2. PPG-derived series

Five series which have been previously related to respi-

ration were extracted from PPG signal: PRV, PAV, PWV,

pulse upslopes, and STT. The first 3 series were extracted

as in [3]: PRV was generated by the inverse interval func-

tion using nMi
as fiducial point, PAV was computed using

nBi
as reference, and PWV was computed as the time be-

tween nOi
and nEi

.

For the STT measurement, nOi
was considered the onset

of the pulse upslope. The end of the pulse upslope (nSEi
)

was detected by using a similar algorithm. Let x(n) be the

PPG signal, and x′(n) its 5-Hz-lowpass derivative version.

Then, the maximum upslope point (nUi
) is set as the ab-

solute maximum of x′(n) within the 300 ms prior to nAi
.

Next, nSEi
is set at that point where x′(n) falls to a percent-

age η = 0.3 of its value at nUi
.

Subsequently, STT was computed as the time interval

between nOi
and nSEi

. An illustration of STT definition is

given in Fig. 1. On the other hand, the pulse upslope was

set as x′(nUi
).
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Figure 1. Example of x(n) and x′(n) with definitions of

nUi
, nOi

, nSEi
, and STT.

Note that none of the studied 5 series are evenly sampled

as pulses occur non-uniformly in time. For each one of the

series, a median-absolute-deviation-based outlier-rejection

rule [3] was applied, and a 4-Hz evenly sampled version

was obtained by cubic spline interpolation.

2.3. Feature extraction

For each 1-min fragment, the standard deviation (SD) of

each one of the 5 PPG-derived series were used as features,

representing the power of the oscillations. In addition, 3

features from the frequency domain were also extracted.

In order to estimate the power spectral density (PSD) of

each one of the 5 series, the Welch periodogram was ap-

plied using a Hamming window of 40 s and an overlap of

75%. The power at low frequency band (LF, [0.03 Hz,0.15

Hz]), the power at high frequency band (HF, [0.15 Hz,0.4

Hz]), and its normalized version with respect to LF+HF

(LFn) were computed by integrating the PSD and used as

features. In this way, a total of 20 features were extracted

from each 1-min fragment of PPG signal.

Artifactual segments were automatically detected and

excluded from the analysis if any of the following criteria

is fulfilled: 1) the segment contains an artifact according to

the artifact detector described in [10], or 2) the quality of

the segment is bad according to the pulse-to-pulse-interval-

based criteria described in [11].

2.4. Classification

The data set was divided into 2 groups: Training set and

Test set. This division was performed ensuring that all the

segments from each one of the subjects belongs to the same

set, and trying to obtain subjects with similar number of

OSA segments (less represented class) in both sets. In or-

der to satisfy these criteria, subjects were sorted by their

number of OSA segments. Subsequently, the selection was

performed in an alternating way. Furthermore, in order to
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balance the groups at the training stage, the number of NB

segments from each subject in the Training set was reduced

to the number of OSA segments of that subject. This se-

lection was performed based on k-means in order to obtain

a good representation of the underlying distribution of the

data. Table 1 shows details about Training and Test sets.

Table 1. Details about Training and Test sets.

Training set Test set

# subjects 13 13

# OSA segments 286 367

# NB segments *286 3548

*Note that Training set was balanced by k-means. A total of 3556 NB

segments were available for the training set before the balancing.

A least squares support vector machine (LS-SVM) clas-

sifier with an RBF kernel [12] was used in this study. This

classifier was chosen because it offered the best perfor-

mance in a previous ECG-based study [1]. Training set

was used for performing a feature selection by a forward-

wrapper approach. Features were added consecutively

maximizing the area under the receiver operating char-

acteristic curve (AUC). As ANS regulation is different

between sleep stages and particularly between rapid eye

movement (REM) and non-REM stages [13], a subset of

the data set was also analyzed, consisting of all segments

not containing REM sleep stage.

3. Results

A total of 8 features were selected by the forward-

wrapper approach: SD of PRV; LFn and HF of PAV; LF

of PWV; SD and LF of pulse upslopes; and LFn and HF

of STT. Table 2 shows accuracy (Acc), sensitivity (Se),

specificity (Sp), positive predictive value (+PV), and AUC

which were obtained when using the classifier applying the

selected features as inputs to the Test set, excluding and not

excluding the REM labeled segments. Figure 2 shows the

obtained receiver operating characteristics curves.

Table 2. Performance of the classifier on the Test set.

No REM exclusion REM exclusion

Acc 72.66% 73.51%

Se 73.81% 71.99%

Sp 72.55% 73.65%

+PV 21.12% 20.73%

AUC 82.12% 79.68%

4. Discussion

In this paper, the potential for discriminating OSA from

NB was analyzed using 5 series which can be derived from
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Figure 2. Receiver operating characteristics curve ob-

tained with the Test set.

the PPG signal and which have been related to respiration:

PRV, PAV, PWV, pulse upslope, and STT. For each series,

4 features related to its power were extracted: LF, HF, LFn,

and SD. The 5 series are expected to be affected by both

sympathetic modulations in low frequency, and by respira-

tion, which is often in high frequency but may fall to low

frequency. Thus, LFn could be interpreted as a sympa-

thetic marker, and SD a sum of both effects.

All features were higher during OSA than during NB.

This could be explained by a sympathetic activation in case

of LF and LFn, by an intensification of respiratory effort

in case of HF, and by any of the previous effects in case of

SD. Increases of LF and LFn may be explained also by a

fall of respiratory rate below 0.15 Hz.

Training and Test sets were composed of segments from

different subjects avoiding to obtain biased results due to

possible subject overfitting. Furthermore, the number of

OSA segments is much lower than the number of NB seg-

ments. In order to obtain a balanced training set, a k-

means-based selection of NB segments was performed en-

suring that each one of the subjects of Training set con-

tribute the same number of OSA segments as NB seg-

ments. In contrast, no balancing techniques were applied

on Test set in order to obtain results from a real scenario.

The classifier obtained an AUC of 82.12%, which is

higher than other PPG-based methods in the literature such

as [6] where an AUC of 72% was reported. Still, the

obtained Acc was 72.66%, similar to the 69% reported

in [6]. This Acc is low for clinical diagnosis purposes

but it is interesting for screening purposes taking into ac-

count the convenience of PPG signal for such devices.

However, only OSA pulmonary events were analyzed, ex-

cluding from the analysis other pulmonary events with a

high diagnostic relevance such as obstructive hypopnea

and central and mixed apnea/hypopnea. One of the pos-

sible confounders are artifacts, as PPG signal is very af-

fected by them and some of them may not be detected by
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the applied techniques. Furthermore, the obtained +PV is

as low as 21.12% indicating a high number of false pos-

itives. These false positives could be explained by sym-

pathetic activations during sleep which are not related to

an apnea/hypopnea event, such as those occurring physio-

logically during REM sleep [13]. However, results did not

improve when excluding the segments during REM sleep

from the analysis. Similar Acc and +PV were obtained

(73.51% and 20.73%, respectively), suggesting that REM

sleep is not the only cause of those non-apnea/hypopnea-

related sympathetic activations during sleep. Another pos-

sible explanation could be a low respiratory arousal thresh-

old that makes arousal to be generated before the respira-

tory flow falls enough to be considered an apnea/hypopnea

event according to the AASM12 criteria. Also, respiratory

rate falling below 0.15 Hz during NB would increase LF

and LFn and may produce a false positive. Information

about respiratory rate, which can be extracted form the

PPG signal, may help to improve +PV.

5. Conclusions

These results suggest that the studied features are

promising for the discrimination of OSA from NB using

only the PPG signal. Further studies must be elaborated

to improve the +PV, and to assess the performance when

analyzing other pulmonary events such as obstructive hy-

popnea and central and mixed apnea/hypopnea.
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