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Abstract

Our long-term goal is the development of an automatic
identifier of attentional states. In order to accomplish it,
we should firstly be able to identify different states. So, the
first aim of this work is to identify the most appropriate
features, to detect a subject high performance state. For
that, a database of electrocardiographic (ECG) signal of
two unequivocally defined states (rest and attention task)
is needed. To achieve this goal, ECG signal is recorded, in
those cognitive states from up to 54 subjects as a sample
of the population.

Temporal and frequency parameters of heart rate vari-
ability have been computed from ECG signal. Addition-
ally, the respiratory rate has been estimated from the same
signal. In total, ten features are obtained for each subject.
They provide information about the physiological response
of the subject and about his autonomic nervous system. Re-
sults show that eight from these features present significant
differences between subject’s baseline and subject’s atten-
tional state; and selecting only four of them, state classifi-
cation accuracy reaches a mean of 75.91%.

1. Introduction

Attention of security and defense personnel may be af-
fected, among others, by psychological stress and by states
of sleep deprivation [1, 2]. It is also essential for such per-
sonnel, as well as for pilots in general, to maintain an ad-
equate divided attention. It is the ability to respond to at
least two tasks at the same time [3]. Divided attention is
mainly addressed to the study of the deficit as a conse-
quence of the simultaneous presentation of information or
the concurrent realization of several activities. Brief Test
of Attention (BTA) is standardized for the measure of di-
vided attention [4].

The technological challenge we face is based on the fun-
damental hypothesis that during the execution of an ac-
tivity that requires the subject sustained attention, there
are alterations in the Autonomic Nervous System (ANS),
which can be noninvasively quantified by the recording of

physiological signals. These alterations in the ANS can
be studied by analyzing the Heart Rate Variability (HRV)
from the ECG signal. HRV (and the balance between its
two branches: sympathetic and parasympathetic) is one
of the most widely used noninvasive measures to evaluate
ANS activity [5].

One essential point before the execution of tasks where
safety is involved, is to know the person capability to main-
tain an adequate level of attention at this precise moment.
In order to be able to distinguish it, firstly we try to iden-
tify the most appropriate physiological variables to detect
a high performance subject state. To achieve this goal, an
ECG signal database is recorded from up to 54 subjects as
a sample of the population. The ECG signal is recorded
in two unequivocally defined states: rest and high level of
attention. The HRV is estimated from the ECG signal, and
classical temporal and frequency parameters are extracted.
Also the respiratory rate is estimated from the ECG sig-
nal. For each subject, 10 features are obtained, which will
provide information about the subject’s physiological re-
sponse and ANS.

2. Materials and methodology

2.1. Data base

The generated database includes recordings of 54 sub-
jects (50 males and 4 females). Their age is 30.94 ± 6.19
years and they are meanly military personnel (49 out of 54;
91% of total population).

Subjects’ ECG signal was recorded, in order to study
differences in biological signals related to two stages:
• Baseline (BL). Subjects remain 5 minutes seated, with-
out performing any task. First 30 seconds from the base-
line are discarded. Next 2 minutes are processed.
• Attention test (BTA). During the attention state, subjects
perform the Brief Test of Attention (BTA). The BTA test
consists of two parts. In the first one, subjects listen to 10
lists of letters and numbers with a variable length between
4 and 18 elements, and write how many numbers each list
contains, ignoring the letters. In the second part the 10 lists
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are read again, but this time subjects must count letters,
ignoring numbers. Two minutes of the BTA test segment
while subjects count numbers are processed.

Recordings of ECG were obtained thanks to Nautilus, a
device developed by the University of Kaunas, Lithuania
[6]. It allows us to record the ECG signal with three non-
orthogonal leads at a sampling frequency of 2000 Hz.

2.2. Heart rate variability signal

The Time Variant Integral Pulse Frequency Modulation
(TVIPFM) model is used to represent the control of the
heart rate (HR) by the ANS [7].

First, heart beats are detected from the recorded ECG
signal using an algorithm based on wavelets [8]. Ectopic
beats, missed beats and false detections are identified [9].
Then, an instantaneous heart rate signal dHR(n), sampled at
4 Hz, is obtained from the beat occurrence time series.

Then, a time-varying mean heart rate, dHRM(n), is ob-
tained by low-pass filtering dHR(n), with a cut off fre-
quency of 0.03 Hz:

dHR(n) =
1 + M(n)

T (n)
dHRM(n) =

1

T (n)
(1)

where M(n) represents the modulating signal which car-
ries the information from ANS and T (n) is the mean heart
rate, which is considered to be slow-time-variant by this
model. HRV and modulating signals are estimated accord-
ing to:

dHRV(n) = dHR(n)− dHRM(n) M(n) =
dHRV(n)

dHRM(n)
(2)

2.3. Time-frequency analysis of HRV

From the beat occurrence time series detected, five tem-
poral parameters were computed as the mean of the two
minutes selected for each stage (baseline and attention):
• HRM: mean heart rate,
• SDNN: standard deviation of all normal-to-normal (NN)
intervals,
• SDSD: standard deviation of differences between adja-
cent NN intervals,
• RMSSD: square root of the mean of the squares of the
successive differences between adjacent NN,
• pNN50: number of pairs of successive NN that differ by
more than 50 ms, divided by the total number of NN.

Time-frequency analysis is applied to M(n) to char-
acterize the rapid response of ANS to BTA test. The
smoothed pseudo Wigner-Ville distribution (SPWVD) is
used because it provides better resolution than non-
parametric linear methods, independent control of time
and frequency filtering, and power estimates with lower

variance than parametric methods when rapid changes oc-
cur. SPWVD of M(n) is computed according to (8), where
n, m are time and frequency indexes respectively.

The analytic signal aM(n) is defined as aM(n) =
M(n) + j · M̂(n), where M̂(n) represents the Hilbert trans-
form of M(n). The terms g(n) and h(l) are time and fre-
quency smoothing windows, chosen to be Hamming win-
dows whose lengths are 2·N+1 = 203 and 2·L+1 = 1025
samples, respectively [10].

In relation to frequency, four parameters are calculated
based on SPWVD as the mean of the two minutes selected
for each stage (baseline and attention):
• PLF: power in the LF band (0.04 - 0.15 Hz),
• PHF: power in the HF band (0.15 - 0.4 Hz),
• PLFn : power in LF band normalized respect to powers in
LF and HF bands: PLFn = mean(PLF(n))/(mean(PLF(n))+
mean(PHF)(n)),
• RLF/HF: ratio between LF and HF power: RLF/HF =
mean(PLF(n))/mean(PHF(n)).

2.4. Respiratory information

Respiratory information can be extracted from ECG us-
ing an ensemble of signals (≥ 1) obtained from it. A
method for estimating respiratory rate from electrocardio-
gram signals is presented in [11]. It is based on QRS slopes
and R-wave angle [12], which reflect respiration-induced
beat morphology variations [13]. The following series are
studied as ECG Derived Respiration (EDR) signals: slope
between the peak of Q and R waves, slope between the
peak of R and S waves, and the R-wave angle. The method
assigns to each beat occurrence the value of its associate
QRS slope and R-wave angle. These signals are unevenly
sampled, so a resampling at 4 Hz to standardize them is ap-
plied in addition to a mad-based-outlier rejection. Finally
a band-pass filter is applied (0.075-1 Hz).

In this study three leads are registered and three EDR
signals are generated for each lead, so nine final signals
conform the ensemble to extract respiratory information
to the ECG. An algorithm based on [11] is applied over
the nine EDR signals (j = 1...9). For each signal, a power
spectrum density Sj,k(f) is estimated every 5 seconds from
the kth 40 seconds length running window by the Welch
periodogram, using sub-windows of 12 seconds and 50%
of overlapping. For each Sj,k(f), the location of the largest
peak fp(j, k) is detected.

Subsequently, a measure of peakness Pj,k is obtained
from Sj,k(f) as the percentage of power around the fp(j, k)
with respect to a reference interval ΩR(j, k) [11]. Then, a
peaked-conditioned average spectra, S̄k(f), is obtained by
averaging those Sj,k(f) which are peaked enough:

S̄k(f) =

Ls∑
l=−Ls

J∑
j=1

χAj,k−lχ
B
j,k−lSj,k−l(f), (3)
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PM(n,m) = 2 ·
∑L−1
l=−L+1 |h(l)|2 ·

[∑N−1
n′=−N+1 g(n′)aM(n+ n′ + l)aM

∗(n+ n′ − l)
]
· e−j2l(m/M)π

m = −M + 1...M (8)

where Ls was set to 2 in order to average a maximum of 5
spectra as in [11], J is the number of signals, and χAj,k−l
and χBj,k−l are two criteria to consider whether the power
spectrum Sj,k−l(f) is peaked enough or not. These cri-
teria allow to take part in the average only those Sj,k(f)
whose Pj,k is above 85% (in this case χAj,k = 1; otherwise,
χAj,k = 0) and its total power is greater than 95% of the
maximum (in this case χBj,k = 1; otherwise, χBj,k = 1).
So, the respiratory rate is estimated as:

FR(k) = arg max
f

S̄k(f). (4)

The respiratory rate is also used as an indicator to dis-
card subjects. Those with FR < 0.15 (8 subjects) or
FR > 0.4 (2 subjects) are discarded, because they could
affect the ANS interpretation.

2.5. Statistical analysis and classification

A statistical analysis of the nine parameters obtained
from ECG and the respiratory rate has been implemented
in order to identify both states. Firstly, the Shapiro-Wilk
test is applied to distinguish whether the signal has a nor-
mal distribution. When the normal distribution of the sig-
nal is verified, the t-Student test is applied. In other case,
the Wilcoxon paired test is applied. A p-value ≤ 0.05 de-
fine significance.

These tests are applied to each one of the 10 parameters
extracted from the ECG signal during the BTA test and are
normalized to the sum of the two states:

Xi
nBTA =

Xi
BTA

Xi
BTA +Xi

BL

(5)

whereX is each one of the 10 parameters and i = 1...Ns,
being Ns the number of subjects. For each parameter, sub-
jects who exceed any of the following limits, in any of the
two stages, are identified and eliminated:

lowerX = Q1(Xi=1..Ns

nBTA )− 1.5 · IQR(Xi=1..Ns

nBTA ) (6)

higherX = Q3(Xi=1..Ns

nBTA ) + 1.5 · IQR(Xi=1..Ns

nBTA ) (7)

The Ensemble Subspace Discriminant classifier has
been used in order to classify states. Later on, it has been
validated using Leave-One-Out cross-validation.

3. Results and discussion

Table 1 shows the values of all analyzed parameters for
both stages and the results of the statistical analysis. These

results show a significant decrease in the power of the HRV
classical bands (PHF and PLF) during the BTA. Besides, a
non-significant increase is shown in the normalized val-
ues of PLFn and RLF/HF. This decrease in the PHF has been
observed also in other works where subjects perform high
level of attention demanding tasks [14], but their results
show a non-significant increase in PLF, and a significant
increase in PLFn and RLF/HF. An increase in the PLF and con-
sequently in the sympathetic markers (PLFn and RLF/HF) is
related to the activation of the sympathetic system, which
occurs when the subject is exposed to various types of
stressors (e.g. mental arithmetic, exams, reaction time,
etc.) [14, 15]. This behaviour is not experimented in our
work due to BTA test has a low stress component, focused
only on subject’s attention, differently to [14], where the
main goal lies in stress generation.

There is also a significant increase in respiratory rate and
heart rate. The FR has been identified in other works with
significant differences between stress situations and high
level of attentional states versus rest states [14]. The rest
of temporal parameters show a significant decrease during
the attention state.

A classifier with four of the most significant parameters
(PHF, HRM, pNN50 and FR) has been trained an validated.
The mean accuracy obtained in 25 repetitions is 75.91%
(min: 73.26%; max: 80.23%).

4. Conclusions

This paper represents a first approximation to our ul-
timate goal: an automatic identifier of attentional states.
Results suggest the use of only the ECG signal could be
enough, as eight ECG-based parameters show significant
differences between the two evaluated states; and with the
use of only four of them, the mean accuracy is 75.91%.
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Table 1. Values (mean ± std) of time, frequency and respiration parameters at each stage (au. arbitrary units, ad.
adimensional, nu. normalized units) and their normalization. Statistical differences are represented by: ∗ (p < 0.05),
∗∗ (p < 0.001) and ∗∗∗ (p < 0.0001). Final Size indicates final number of subjects used for each parameter.

Parameters BL BTA BTA/(BL+BTA) Final Size Outliers
PLF(10−3 au) 4.21± 7.31 2.09± 1.26 0.43± 0.19 ∗ 43 0
PHF (10−3 au) 1.87± 2.10 1.02± 0.82 0.41± 0.16 ∗∗ 40 3
PLFn(nu) 0.66± 0.18 0.69± 0.14 0.52± 0.06 40 3
RLF/HF (ad) 3.12± 3.31 3.05± 2.41 0.55± 0.18 43 0
HRM (beats/min) 68.96± 10.87 72.73± 11.47 0.51± 0.02 ∗∗∗ 43 0
SDNN (beats/min) 68.46± 29.45 53.18± 19.25 0.44± 0.09 ∗∗ 43 0
SDSD (beats/min) 52.83± 32.80 42.16± 24.75 0.45± 0.08 ∗∗ 41 2
RMSSD (beats/min) 52.63± 32.64 42.03± 24.64 0.45± 0.08 ∗∗ 41 2
pNN50 (%) 26.54± 20.46 19.77± 19.73 0.36± 0.19 ∗∗∗ 41 2
FR (Hz) 0.25± 0.05 0.29± 0.06 0.54± 0.04 ∗∗∗ 39 4
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