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Abstract

Widespread variability in the electrophysiological be-
haviour of individual cardiac cells, as well as between the
hearts of different members of a population, presents a sig-
nificant challenge to both the biological and mathematical
understanding of cardiology. This variability underpins
the differential responses to heterogeneities in pathologies
of the heart, and to drug treatments, and so a thorough un-
derstanding is critical. A range of techniques exist for both
uncertainty quantification and exploration of variability in
mathematical models, but these require evaluation of the
model at large numbers of points in a parameter space
and the complexity of these models can make such anal-
yses prohibitively computationally expensive. We demon-
strate the use of dimension reduction to allow Gaussian
processes to emulate the complex spatiotemporal outputs
of heart models, thus making studies of variability feasi-
ble. Significant improvements in computational speed are
achieved.

1. Introduction

When electrically stimulated, a cardiac cell undergoes a
pattern of depolarisation and repolarisation known as the
action potential (AP), encoded by the change in its mem-
brane potential over time. The shape of the AP governs
important properties such as conduction velocity and re-
fractory time, but can differ considerably between individ-
ual cells even of the same type. This variability makes ex-
perimental data much harder to interpret, and raises further
questions about the cell properties that might be varying in
order to produce these changes. Exploration of this vari-
ability using mathematical models is an area of significant
recent interest [1-3].

Variability persists up to the tissue and organ level, with
differences in heart function due to factors including age,
hormone levels and pathologies. This creates important
effects like a differential response to drug treatments. The
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sources of such variability are difficult to quantify, poten-
tially arising from wide-scale differences in cell proper-
ties or from small regions of inhomogeneities that produce
knock-on effects, even potential re-entrant currents. Ef-
forts to characterise this variability are also hindered by the
computational complexity and the very fine computational
meshes required to resolve the strongly nonlinear dynam-
ics of heart models.

Emulation is a technique that allows for uncertainty
quantification and exploration of variability in complex
systems where model runtime is a limiting factor [4]. The
general idea is to treat the model to be emulated as a black
box, focusing only on the response surface of each of the
model outputs in terms of the model’s inputs. This black
box is termed the simulator. Emulation is achieved by con-
structing an emulator (also known as a surrogate model,
or meta-model) that approximates the response surfaces of
each of the simulator’s outputs using a mechanism that is
much quicker to evaluate. Techniques for emulation in-
clude regression, polynomial chaos expansions, or Gaus-
sian processes (GPs), the technique we focus on in this
work. Each approach makes use of limited information
about the response surface, namely the outputs of the sim-
ulator evaluated at a set of training points. Emulation is
then about filling out the response surfaces of the outputs
between these points.

2. Emulation of Heart Models

2.1. Gaussian Process Emulation

GPs are a popular technique for emulation that use a
generalisation of the multivariate normal distribution with
mean and covariance specified as functions, allowing for
the modelling of continuous processes [5]. Training a GP
emulator involves selecting appropriate forms for the mean
and covariance function in responses to the training data,
typically by specifying parameteric forms for these func-
tions and then determining appropriate values for the hy-
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perparameters of these parametric forms.

Setting aside Bayesian approaches that place prior dis-
tributions on the hyperparameters and integrate over the
entire space of potential GPs, a natural method for choos-
ing hyperparameters is to maximise the likelihood. Assum-
ing a zero mean function, this takes the form

1 1 N
log £ = —inKfly ~3 log det(K) — 3 log27. (1)

Here K is the matrix of covariances between all of the m
training points, and y the vector of simulator outputs at
each of the training points. The hyperparameters change
the covariances between the training points and enter into
the likelihood (1) via the elements of the K matrix. Max-
imising this likelihood is a continuous optimisation prob-
lem to which traditional methods can be applied, with the
derivatives of equation (1) with respect to the hyperparam-
eters available at little extra cost [5].

Once the GP has been trained, predictions y* are made
using the mean of the GP at the prediction points, with
its variance providing a measure of uncertainty in these
predictions. The mean and variance are given by

y*=K*K 'y  Var=K*" - KK 'K*,
with K* the matrix of covariances between training and
prediction points and K** the vector of variances at the
prediction points.

Here we use a squared exponential covariance,

k(6,0') = 0% exp —Zw +0,6(0,0")
b - 2l12 n b) b
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with o, 0,, and the [; the hyperparameters. o is the variance
in the process, o, is the noise associated with each of the
observations and [ are the “effect lengths™ of each of the
input parameters, a measure of how sensitive the output is
to that parameter. In emulation, the observations are runs
of the simulator and so there is no noise associated, but it
is still included as a regulariser for the process.

A simulator’s multiple outputs can be emulated sepa-
rately, using independent GPs for each output. However,
this independence creates an issue when correlation be-
tween outputs can be expected or when proximal loca-
tions in space or time are expected to be similar (corre-
lated). This issue is resolved using dimension reduction
techniques that seek to emulate the representative features
that encode spatial or temporal outputs. These features can
be treated as independent and hence emulated individually.

2.2. Emulating Single Cell Models

Models for the AP of a single cardiac cell represent the
cell as a volume capacitor of capacitance C,,,, and thus

express the change in membrane potential, V' over time as
the combined effect of all transmembrane currents,

o S+l | @
Here I is an external stimulus and the I; are the set
of model-specific transmembrane currents, which are ex-
pressed in terms of a set of gating and other state variables
all with their own associated ODEs. Equation (2) is thus a
system of ODEs, and is highly non-linear. Following ev-
idence that ion channel density is one of the significantly
variable properties between cells, studies in variability of-
ten focus on varying constants that express the current den-
sity of each individual current [1,3].

We seek to produce an emulator that replaces numeri-
cal integration of the system (2) for specified values of the
variable channel conductances. The output of this emula-
tor is the AP curve, V (¢),t € [0, tena] , that results after
pacing to a steady state using a fixed stimulus regime. We
represent the V(¢) curve in terms of a set of features that
can then be emulated by independent GPs. Previous work
has used AP biomarkers, measures of the key properties
of the AP such as its duration, resting potential and activa-
tion amplitude, as these features, but this does not allow
re-construction of the original V(¢) curve from the em-
ulated features. Our approach emulates full AP profiles,
from which biomarkers can then be easily calculated if re-
quired.

We obtain a set of features by decomposing the AP into
a truncated infinite series over orthogonal functions,

Ny
V(t)~ ) aiPi(f). (3)
=1

The features are then the coefficients of this series, a;. Pre-
dicted APs will always be a sum over smooth functions,
and thus smooth themselves, satisfying the requirement
of correlation between nearby timepoints. After testing a
range of potential functional bases, we selected Legendre
polynomials L;(t) transformed to be orthogonal over the
range [0, tend], for which the coefficients of the series are

) tend
a; = 2”1/ V(1)L (2 t 1) it. (4
JO

2 end

We calculate the integrals in (4) using Clenshaw—Curtis
quadrature, as this naturally places large numbers of
quadrature points towards the boundaries of the domain
and hence can be expected to better resolve the extremely
rapid upstroke in response to stimulus at ¢ = 0.
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2.3. Emulating Tissue Models

The spread of excitation in tissue is represented by the
monodomain partial differential equation,

ov 1
== XCpV - (DVV) — o ;Ij + Igim | . 5

Here D is the conductivity tensor, X the volume-to-surface
ratio for cardiac cells and C,,, I; and Iy are all as de-
fined for the single cell AP model (2). Equation (5) is
much more costly to simulate than single cell models, as
it involves the same strong non-linearities now acting at
each point in the spatial domain. This necessitates a fine
spatial grid or mesh, and the different timescales of be-
haviour in different regions of the system make it difficult
to use adaptive timestep methods. This increase in model
runtime makes emulation much more beneficial, but also
increases the complexity of the emulation problem as the
outputs to be emulated now occupy a higher number of
dimensions. Furthermore, (5) is capable of producing ex-
tremely complex patterns of excitation that we expect to
pose great challenge to statistical emulators. For this work
we use a simple stimulation protocol that results only in
radially expanding waves as proof of concept.

We seek to emulate the solution of (5) on a 2D domain at
a small number of p ‘snapshots’ in time, using m training
points. The number of finite differencing nodepoints used
is N2, in this case 401 x 401=160, 801, creating a prob-
lem too large to emulate directly. The orthogonal function
decomposition technique used for dimension reduction in
Section 2.2 would require (N +1)(N¢ +2)/2 terms, also
a prohibitive number of features to emulate. Instead, we
use a kernel isomap transform, a form of dimension reduc-
tion along the lines of multidimensional scaling that uses
geodesic, instead of Euclidean, distances to better capture
manifold structures in the high-dimensional space [6].

Kernel isomap projects the original m x N? matrix of
training data onto a k-dimensional feature space, with the
number of features free to be chosen. This produces an
m x k matrix at each of the p snapshots. The features are
the & most dominant eigenvectors of the kernel matrix, in
the same fashion as kernel principal component analysis.
Predictions for V(x,t) are formed by using GP emula-
tion to predict the co-ordinates in feature space and then
transforming back into the original space by undoing the
isomap transform via local linear interpolation [7].

3. Results and Conclusions

3.1. Single Cell Model Emulation

We emulate the Grandi et al. [8] model for the human
atrial AP. We take as 11 variable parameters the conduc-

tances of all currents except for background and chlorine
currents, including the rate of Ca?* uptake and release by
the sarcoplasmic reticulum. Each parameter is allowed to
vary over the range +30% of the values given in the orig-
inal work, a choice that reflects a physiologically reason-
able level of variability [3].

Training and test data were produced by simulating the
ODE system (2) using MATLAB’s odel5s routine, then
calculating the corresponding coefficients for the Legen-
dre polynomial series for each of the APs in the training
set with Ny = 500. 550 points were selected randomly
throughout the parameter space, with 500 used for training
the remaining 50 reserved for testing. GPs were trained,
and subsequent predictions made using the GP package for
MATLAB available from http://gaussianprocess.org.

Use of a trained GP emulator instead of the simulator
reduced computational time by a factor of 48, even for this
comparatively simple problem of ODE integration. The
majority of APs are emulated very well (Figure 1a), with
occasional discrepancies in the resting potential and during
the initial upstroke. Representative AP curves are com-
pared with those produced by the simulator in Figure 1b,
including one where the emulator performs poorly (dashed
line). This AP is atypical, featuring an early afterdepolari-
sation (EAD), and without training points close to this lo-
cation in the parameter space the GP emulator cannot pre-
dict this unexpected behaviour. However, the overall time
to repolarisation is still well estimated by the emulated AP.

The biomarkers associated with the emulated curves
(Figure 1c) on the whole perform about equally as well as
GPs based on direct emulation of the biomarkers [9]. We
suspect that the approximation of biomarkers using emu-
lated AP curves would be significantly improved by using
more training points in order to increase the chances of
detecting ‘outlier’ behaviours in the simulator, though of
course direct emulation of the biomarkers is also expected
to improve to some extent when more training data is pro-
vided.

3.2. Tissue Model Emulation

As a preliminary demonstration of spatiotemporal emu-
lation, we simulate (5) coupled to the Beeler-Reuter model
for ventricular APs. This model uses four currents, and
hence four variable parameters, and again we use a vari-
ability of £30%. We choose k& = 10 isomap features to
emulate, and increasing the number of features was found
not to improve results. Reflecting the increased cost of
running the monodomain equation simulator, we use only
100 training points. Emulation of the monodomain prob-
lem proved to be more than four orders of magnitude faster
than running the simulator.

Figure 2 shows an example simulation and the corre-
sponding emulator output at different snapshots in time.
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Figure 1. a) The root mean square errors along the curve
obtained for the 50 AP profiles in the test dataset. b)
Emulated and simulated APs at three test points, demon-
strating the range of emulator behaviours. The line styles
(solid, dotted, dashed) delineate the different test cases.
¢) Comparison between direct emulation of biomarkers
and biomarkers calculated from emulated AP profiles.

The spatial spread of the travelling wave of excitation is
well predicted in terms of front shape, speed of propaga-
tion and refractory time of cells. Minor smoothing of the
profile is seen, but this does not impact on the important
properties of the wavefront. However, a wide range of sim-
ulator behaviours are seen across the parameter space, and
not all test points show the same fidelity in emulator pre-
dictions. Further analysis and additional training points,
selected by a rigorous experimental design, are required.

Our initial results demonstrate the potential for massive
speed increases in simulating spatiotemporal heart models
in two or three dimensions. However, the complexity of
these models makes emulation a challenging problem that
requires further investigation. Of particular interest is the
emulation of heterogeneous structures in the heart, which
generate far more complex excitation patterns.

Figure 2. Simulator output (top row) and the correspond-
ing emulator prediction (bottom row) for a series of tem-
poral snapshots. The extent of excitation (depolarisation)
is marked by the brightness of the image.
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