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Abstract 

Background:  Established fetal maturation diagnostics 
evaluates heart rate patterns (HRP) such as baseline, 
variability, decelerations (DC) and accelerations (AC). 
Fetal heart rate variability (fHRV) parameters provide 
valuable additional information. Their dependence on 
those patterns is crucial but not sufficiently explored. 
Objective of the present work is the comparison of the 
maturational age prediction using fHRV parameters with 
respect to those patterns. 

Methods: We analyzed 555 recordings, each one 
lasting 30 minutes, of normal fetuses, from 19 weeks of 
gestation (WGA) onward. We applied a pattern-
segmented fHRV analysis of linear and nonlinear 
parameters under consideration of the fetal behavioral 
states to evaluate the WGA prediction accuracy, based on 
linear regression models that were tested using a 
repeated cross validation scheme. 

Results/Conclusion: fHRV parameters calculated 
under exclusion of DCs, show a significantly improved 
age dependency compared to the standard method, 
especially in the early weeks of the second half 
pregnancy. This aspect may improve the early sensitive 
identification of maturation disorders of the fetus. 

 
1. Introduction 

 
Monitoring the fetal heart rate (fHR) and the 

assessment of fHRV plays a central role in the pre- and 
perinatal clinical surveillance and management of the 
fetus. The standard bedside method applied today is 
cardiotocography (CTG), which is based on ultrasound 
and delivers a cardiac tachogram for which specific 
measures of fHRV have been developed. Computerized 
fHRV rate analysis was introduced in Oxford by Dawes 
and Redman in 1982. In 1989, a system to analyze HRV 
was created based on a database of 8000 fetal heart rate 
recordings. fHRV parameters like short-term variation 
(STV) and long term variation (LTV) are now established 
in obstetric practice for surveillance of fetal well-being 
together with the Dawes-Redman criteria for normality. 

This approach does, however, not lend itself to the 
analysis of HRV according to the standards developed for 
routine electrocardiogram (ECG) with higher sampling 
rate and identifying individual heart beats, equivalent to 

the magnetocardiogram (MCG) applied in the fetus. 
fHRV in time, frequency and complexity domains were 
previously mainly been analysed over the entire time 
series without selecting particular pattern segments. 

The traditional assessment of fetal well-being is based 
on the visual inspection by a trained gynecologist and the 
FIGO guidelines for CTG classification. Similar to the 
Dawes-Redman criteria fHR is analyzed mainly with 
respect to baseline, variability, DCs and ACs. These 
aspects influence the calculated fHRV parameters. ACs 
are defined as an increase in FHR above the baseline for 
longer than 15 seconds and have a maximum excursion 
above the baseline of greater than 15 beats per minute 
(bpm). A DC is defined as fHR decrease below baseline 
for longer than 15 seconds and has a maximum excursion 
below the baseline of greater than 15 bpm. The fetal HRP 
displayed in CTG depends on gestational age, fetal 
activity and a variety of other factors, but classification of 
recordings primarily aimed on distinguishing the healthy 
from the distressed fetuses rather than precisely assessing 
maturation [1].  

The Fetal Autonomic Brain Age Score (fABAS) is 
based on a system biology approach that applies universal 
principles of evolution and self-organization to the 
ontogenetic functional development of the fetus. It can be 
understood as a proxy for the neural integration of the 
developing organism. fABAS estimates the gestational 
age by means of a multivariate linear model based on 
fHRV indices. The coefficients of fABAS resulted from a 
learning set of normal developing fetuses between 19 and 
40 weeks of gestation (WGA) [2]. 

Very little is known about how fHRV parameters 
differ with respect to different fHRP and calculation 
window length, and to what extent the statistical 
properties of these pattern segmented fHRV parameters 
allow a more precise estimation of the fetal maturation 
compared to the established standard fHRV analysis. 

The aims of the present study are I) to compare the 
predicted fABAS values based on the different segmented 
HRV parameters and different window lengths.  

II) to see to what extent the established univariate 
standard HRV parameters are influenced by the fHRP in 
the course of pregnancy and under consideration of the 
fetal behavioral states.  

In that context, segmentation of the measured HR 
under consideration of fetal behavioral state as well as of 
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Figure 1: A 30-minute tachogram (0-12 min 1F, 12-30 
2F) in which DC and AC were marked thick. The solid 
black line shows the estimated baseline. 

the particular exclusion of ACs, DCs and baseline 
correction may provide information about different 
aspects of autonomic modulations in more detail.   
 
2. Methods 

 
Data was obtained from the study database at the 

Biomagnetic Center, Department of Neurology and from 
the Department of Obstetrics, both at the Jena University 
Hospital. We investigated in total 555 recordings from 
165 mothers with singleton normal maturating 
pregnancies during non-stress situations aged between 19 
and 40 WGA. Approval was obtained from the local 
Ethics Committee of the Friedrich Schiller University. All 
subjects gave their written consent to participate in the 
study. 

All measurements were taken in a magnetically 
shielded room. The fMCG recordings were performed 
during daytime over a period of 30 min sampling rate 
1024 Hz, using the 195 channel vector-magnetograph 
ARGOS200 (ATB, Chieti, Italy). The pregnant women 
were positioned supine or with a slight twist to either side 
to prevent compression of the inferior vena cava by the 
pregnant uterus. The Dewar was positioned as close as 
possible but without contact above the fetal heart, 
determined by sonographic localization. 

From the entire 30 min recordings we analyzed 
sections of active sleep (2F) and quiet sleep (1F) with a 
minimum duration of 10 minutes. These states were 
selected by visual inspection of HRP printout and 
consensus decision by three independent obstetricians 
according to the standard criteria, which are extended to 
gestational ages prior to 32 WGA [3]. Generally, a single 
episode per state and dataset was considered. Episodes of 
quiet awakeness (3F) and active awakeness (4F) were not 
considered separately due to their rare occurrence. 

The heart beats were detected using an independent 
component-based strategy [4] and normal-to-normal (NN) 
beat interval series were constructed after visual 
inspection for artifacts and ectopic beats. 

In addition to the original fHR (orig), periods without 
DCs (oD), segments with neither DCs nor ACs (basal) 
and the baseline corrected fHR (baseline) were analyzed 
in the state sections. The basal activity was only 
considered in sections of quiet sleep, due to the fact that 
longer episodes of basal activity are only extractable there 
(Figure 1).  

The methodology of the here proposed MCG based 
segmented HRV analysis is different from the traditional 
FIGO guidelines. In the present context, the definitions of 
AC and DC were modified according to the following 
rules due to the higher temporal resolution of the fMCG 
and the fact that before 32 WGA, their amplitude and 
duration may be lower: 
• An AC is defined as an increase in the heartrate for 

more than 5 seconds with a deviation ≥ 10 bpm. 

• A DC is defined as a decrease below the baseline for 
more than 5 seconds and a deviation ≥ 20 bpm. 

In order to detect ACs and DCs a baseline needs to be 
determined. There is no gold standard for fitting a 
baseline, and it is normally assigned by means of visual 
assessment, but occasionally, it may be difficult or even 
impossible to guess where the baseline should be. The 
baseline estimation follows mainly the original Dawes-
Redman baseline fitting procedure [5] with some minor 
changes, which can be summarized in the following steps: 

a) Partitioning of the data into no overlapping 5 minute 
segments in order to react to strong baseline drifts 

b) Creation of the frequency distribution of the epoch-
by-epoch average pulse intervals and scanning the 
distribution from right to left until a peak value is 
identified that satisfies some specific conditions  

c) Delimitation of the baseline by not considering 
values that are not within the range of ± 5 bpm from 
the calculated peak value 

d) Combining the single 5 minute baseline segments 
and smooth them with a 101 Heartbeat mean 
window 

The ACs and DCs were marked by threshold detection, 
removed from the FHR signal and the remaining 
segments are concatenated accordingly to the considered 
pattern segmented fHRV analysis. Figure 1 shows an 
example file in which the segmentation is illustrated. 
Within the first 12 minutes the fetus is in 1F state 
followed by 18 minutes 2F.  

In order to compensate the effect of different data 
lengths of the state segments, all parameters are 
determined by means of a sliding window. The following 
window lengths were considered: 5,6,7,8,9,10 minutes 
with an overlap of 2 minutes for all HRV parameters.  
The parameters gMSE(1-4), LZC and of the frequency 
domain represent exceptions to the above description 
since they use already a sliding window during their 
calculation procedure. 
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This kind of pattern segmented window HRV 
calculation was performed for all significantly age related 
HRV parameters of fABAS and the most frequently used 
linear HRV parameters from time and frequency 
domains, as well as some of the nonlinear HRV 
parameters. On each of the four differently segmented 
NN interval series, 23 different HRV parameters were 
calculated.  

In order to ensure a normal distribution of the HRV 
parameters different transformations functions (sqrt/log) 
were tried and the resulting distributions were tested for 
normality via Shapiro Wilk test and the visual inspection 
of the QQ-plot. An overview of the calculated parameters 
and the used transformation functions can be seen in table 
1. For calculation details please see Schmidt et al. [6]. 

The signal analysis was performed using MatLab2014a 
and the statistical analysis using R version 3.3.2. The 
influence of the different segmented fHRV parameters on 
WGA prediction was examined on the basis of univariate 
linear regression models. The goodness of fit parameter 
SE (standard error) is estimated via a 10-fold cross 
validation with 3 repeats. The SE’s from the single folds 
are tested via Wilcoxon signed rank sum test for 
significant differences. The significance level was set to 
0.05. The same test procedure and settings were used for 
the comparison of the different multivariate fABAS 
models. 

 
3. Results 
 

Episodes of active sleep could be found in 449 of the 
555 recorded datasets (80.9%) and fetal quiescence in 181 
traces (32.6%). Due to the small number of 1F files and 
for reasons of space, only the results of the 2F analyses 
are shown. 

Figure 2 shows the standard error of the three different 
fABAS models together with their standard deviation for 
different window sizes from 5 up to 10 minutes in the 2F 
state. The scores are based on their corresponding pattern 
segmented fHRV parameters. Overall, the differences in 
accuracy for the three different fABAS models (orig, oD, 
baseline) at each window length are significant at the 
transitions from 5-6, 6-7 and 7-8 minutes.  

When comparing the models within the different 
window lengths, the fABAS-oD model is always 
significantly worse (by < 0.1 WGA). The fABAS-
baseline model can assert itself as a significantly better 
model from the 7 minute window onwards. For the 
further presentation of the univariate results, we limited 
ourselves to the results of the 5-min segments. 

Table 1 shows the SE of the univariate regression 
models of the considered fHRV parameters. There are 
only few significant differences between the original and 
the baseline corrected models. The changes are in the 
range of magnitude around the 0.01 SE.  

The majority of the significant differences are only 

observed in fHRV parameters calculated without DCs. 
With the exception of the non-linear fHRV parameters, 
meanHR, Amp and the pnn5 all other parameters show 
improvements of the SE values by 0.2 to 0.4. The highest 
improvement can be seen by the frequency parameters 
closely followed by rmssd. For skew and α2 the removing 
of DCs had a negative effect.  

From the fABAS related HRV parameters Amp, 
skewness (skew) and pnn5 provided strong univariate age 
predictors. The 2 strongest predictors are Amp and pnn5 
with a SE of 3.51 and 3.59. They are followed by the 
P0V, a parameter from the family of symbolic dynamics, 
which captures fast signal changes. fABAS-orig predicts 
the maturational age significantly better than Amp by an 
amount of 0.5 SE. 

 
4. Discussion/Conclusion 
 

In this work we could primarly show a systematic 
effect on single fHRV parameters of the time and 
frequency domain by excluding DCs.  

In the multivariate case using fABAS, the removal of 
DCs significantly worsened the results. In comparison to 
the univariate parameters, the multivariate estimation of 
maturational age remained very stable among the 
considered HRP and window lengths with an accuracy of 
3 WGA.  For the shorter window lengths some minor 
accuracy changes could be found as well as some 
significant accuracy improvements through a baseline 
correction before calculating HRV parameters.  However, 
these changes are only on the magnitude of 0.01-0.02 
weeks. These minimal changes are not relevant for 
clinical routine in the pre- and perinatal clinical 
surveillance and management of the fetus. 

In the univariate case, in contrast to the multivariate 
results, the exclusion of DCs clearly improved the 
prediction accuracy. DCs occur primarily in the early 
phase of pregnancy and become progressively less as the 

Figure 2: SE ± standard deviation of the three fABAS 
scores for different window sizes from 5 up to 10 
minutes in the 2F state 
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fetus matures. Accordingly, the most pronounced 
effect can be observed in the early weeks of the 
pregnancy period studied here. In the FIGO 
guidelines DCs play a central role in interpretation 
of CTG and the classification of abnormal fHR 
traces. For those reasons, it is advisable to treat the 
DCs separately before calculating fHRV 
parameters, especially when considering younger 
pregnancy periods. By contrast, the non-linear fHRV 
parameters show only minor changes by removing 
DCs. This may be due to their internal processing 
method. The parameters quantify the predictability 
of a signal and are independent of the signal’s 
variation range. The few significant accuracy 
changes within the baseline corrected parameters are 
again in a negligible range of magnitude. 

The segmentation according to behavioral states 
classification is the result of a consensus decision of 
three experts based on HRP that furthermore slightly 
change with maturation age between 19 to 40 WGA. 
This classification is not always unambiguous, but it 
reflects the heterogeneity of recordings and the state 
of the art.     

Traditional HRV indices reflect predominantly 
vagal activity during 1F and sympathetic activity 
during 2F. The presented pattern-segmentation 
methodology may allow a more accurate assessment 
of the complex sympathetic and parasympathetic 
modulations. This capability may allow a more 
sophisticated identification of maturation disorders 
of the fetus. This methodology is intended to 
contribute to further exploration and validation with 
regard to the early identification of developmental 
disorders using independent data sets in multicenter 
studies.  
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HRV 
parameters 

SE 
orig oD baseline 

tim
e 

meanHR 4.31±0.27 4.30±0.27 4.30±0.27 
lg(sdnn) 4.20±0.28 3.82±0.30 4.19±0.29 

lg(rmssd) 4.41±0.22 3.98±0.29 4.41±0.22 
sqrt(pnn5) 3.65±0.29 3.59±0.29 3.64±0.30 

skew* 3.53±0.33 3.77±0.35 3.47±0.32 
log(Amp) 3.54±0.33 3.51±0.34 3.54±0.34 

ctg 

sqrt(STV) 3.94±0.31 3.73±0.27 3.96±0.31 
sqrt(LTV) 4.17±0.28 3.78±0.28 4.20±0.28 

frequency 

log(Total) 4.45±0.25 3.81±0.31 4.45±0.25 
log(VLF) 4.42±0.26 3.79±0.32 4.42±0.26 
log(LF) 4.48±0.24 3.96±0.28 4.48±0.24 

log(IMF) 4.45±0.25 4.25±0.23 4.45±0.25 
log(HF) 4.42±0.23 4.03±0.29 4.42±0.23 

non- linear  

gMSE1 4.46±0.22 4.47±0.22 4.45±0.22 
gMSE2 4.26±0.27 4.28±0.27 4.27±0.27 
gMSE3 4.16±0.29 4.15±0.28 4.16±0.29 
gMSE4 4.17±0.29 4.16±0.28 4.18±0.28 
POV* 3.67±0.31 3.65±0.3 3.67±0.31 
P1V* 3.76±0.30 3.74±0.29 3.76±0.31 
P2V* 3.70±0.34 3.70±0.33 3.71±0.34 

α1 4.48±0.24 4.45±0.26 4.48±0.24 
α2 4.35±0.25 4.47±0.24 4.34±0.25 

LZC 4.47±0.24 4.47±0.25 4.48±0.23 

 Table 1: The SE ± standard deviation of the univariate regression 
models. For parameters marked with *, no transformation could 
be found to achieve a normal distribution. All other parameters 
are normally distributed. Thick printed numbers mark significant 
differences in comparison to the orig parameter based on a 
Wilcoxon signed rank test. 
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