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Abstract 

Cardiac Resynchronization Therapy (CRT) is generally 

indicated for heart failure patients with a left bundle 

branch block (LBBB). “Strict” LBBB criteria have been 

proposed as a better predictor of benefit from CRT. 

Automatic detection of “strict” LBBB criteria may 

improve outcomes for heart failure patients by reducing 

high false positive rates in LBBB detection. This study 

proposes an algorithm to automatically detect “strict” 

LBBB, developed and tested using ECGs made available 

via the International Society of Computerized 

Electrocardiology (ISCE) LBBB initiative. The dataset 

consists of 12-lead Holter ECGs recorded before the 

therapy from the MADIT-CRT clinical trial. 

The algorithm consists of multi-lead QRS complex 

detection using length transform, a support vector machine 

(SVM) classifier to identify QS- or rS- configurations and 

identification of mid-QRS notching and slurring by 

analyzing the variation of first and second derivatives of 

the signals respectively. The algorithm achieved an 

accuracy of 80%, sensitivity of 86%, specificity of 73%, 

positive predictive value (PPV) of 81% and negative 

predictive value of 79% on the training set. It achieved 

accuracy, sensitivity, specificity, PPV and NPV of 81%, 

88%, 75%, 79% and 85% on the test set. High sensitivity 

to minor slurring and errors in QRS detection result in low 

specificity for LBBB detection.  

 

1. Introduction 

Left bundle branch block (LBBB) is the delayed 

conduction down the left bundle branch which results in 

delayed contraction of the left ventricle with respect to its 

right counterpart [1]. This condition leads to dilated 

cardiomyopathy and widened QRS. Restoration of the left 

ventricle synchrony is achieved by cardiac 

resynchronization therapy (CRT). Despite applying this 

device therapy in approximately 75000 patients per year in 

the United States, nearly one-third of the patients did not 

entirely benefit from this since these patients did likely not 

comply with the requirements of a true LBBB [2]. Hence, 

“strict” LBBB criteria have been proposed to improve 

LBBB detection to alleviate the false positive rate in LBBB 

detection and to improve the efficacy of CRT. 

The “strict” LBBB criteria include QRS duration of 140 

ms for male or 130 ms for female, QS- or rS- 

configurations in leads V1 and V2 and mid-QRS notching 

or slurring in 2 or more leads out of leads I, aVL, V1, V2, 

V5 and V6 [3]. Slurs/notches were required to have an 

onset after 40 ms and before 50% of the QRS width, 

relative to the onset of the global QRS complex.  

This study proposes an algorithm, combining rule-based 

methods, machine learning and time-domain signal 

analysis to detect “strict” LBBB automatically. The 

algorithm also detects the onset and offset of notches and 

slurs which is vital for “strict” LBBB detection. 

2. Methodology 

2.1. Experimental Dataset 

Data from the International Society of Computerized 

Electrocardiology (ISCE), LBBB initiative were used in 

this study [2, 4] with corrected adjudicated criteria [4]. The 

dataset consists of 12-lead ECGs sampled at 1 kHz with an 

amplitude resolution of 3.75 µV, recorded before CRT 

using Holter recorders with Mason-Likar lead placement, 

randomly divided into a training set with 300 records and 

a test set with 302 records. For each subject, the dataset 

contained 10 s ECG signal and a median beat derived from 

it. For this study, the median beat was used and was 

smoothed using a Savitzky-Golay filter of polynomial 

order 3 and frame length of 15. 

The algorithm consists of three components: QRS 

complex detection, QS- or rS- configuration detection and 

notching/slurring detection. Output of these three 

components were combined per the “strict” LBBB criteria, 

to predict presence of LBBB.  All signal processing and 

algorithm development was done in MATLAB (Release 

2017b, The MathWorks, Inc., Natick, Massachusetts, 

United States). 
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Figure 1. Example QRS morphology on the ECG lead V1 when 

(a) QS- configuration or rS- configuration are absent, (b) rS- 

configuration with small R wave followed by deep S wave and 

(c) QS- configuration characterized by a deep S wave.  

 

2.2. QRS Detection 

QRS complex detection was performed using length 

transform [5] which facilitated multi-lead QRS detection 

using median beats from all 12 leads. Multi-channel length 

transform was calculated using equation (1) where xj(t) is 

the median beat of the jth ECG lead, with a window size 

(w) of 70 and a global threshold of 1700. Global threshold 

was selected to minimize the mean square error between 

annotated onset and calculated onset (QRSon) and 

annotated width and calculated width (QRSw) on the 

training set. The resulting QRSon and QRSw estimates the 

global QRS onset and global QRS duration for the 12-lead 

median ECG beat. 

                    𝐿(𝑤, 𝑡) = ∫ √∑ (
𝑑𝑥𝑗(𝑡)

𝑑𝑡
)

212

𝑗=1

𝑡+𝑤

𝑡

              (1) 

 

2.3. QS- or rS- Configuration Detection 

“Strict” LBBB criteria dictate that either QS- or rS- 

configurations are present in both leads V1 and V2. QS- is 

characterized by a lone, deep negative wave whereas rS- is 

characterized by a small R wave followed by a deep S 

wave [6] (Figure 1). A support vector machine (SVM) 

classifier with radial basis function (RBF) [7] was trained 

to detect the presence of either of the configurations. The 

dataset for QS- or rS- detection was prepared using the 

extracted QRS complex in median beats from leads V1 and 

V2. Presence of either of the configurations was 

considered as positive class during training. The SVM 

classifier was trained using 75% of randomly selected 

training set data and was tested using the remaining 25% 

to obtain the best configuration with features: 

maximum/minimum amplitude, mean signal power and the 

signal entropy [8] of the QRS complex. Signal entropy (H) 

of QRS complex yk(t) where k ∈ leads {V1, V2} was 

calculated by generating the histogram of amplitudes with 

n number of bins of 100µV width where pi is the frequency 

of occurrence of ith bin of amplitudes, followed by 

substitution to equation 2.  
 

[𝑝1 , 𝑝2, … . 𝑝𝑛] = ℎ𝑖𝑠𝑡{𝑦𝑘(𝑡)} 

                                       𝐻 = ∑ 𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

𝑛

𝑖=1

                           (2) 

2.4. Notching/Slurring Detection 

Detection of mid-QRS notching in leads I, aVL, V1, V2, 

V5 and V6 was performed using the number of inflection 

points (M′) present during the QRS duration calculated in 

section 2.2. Inflection points were detected as the points 

where first derivative of the median beat crosses zero. 

When one or more notches are present, the number of zero-

crossing points on the first derivative within the QRS 

complex is equal to or greater than 3 (Figure 2a). 

Therefore, the onset and offset of first notch corresponds 

to the 1st and 3rd inflection point, the onset and offset of 

second notch corresponds to the 3rd and 5th inflection point 

and so on. 

During notching, the signal is not strictly increasing or 

decreasing. However, during slurring, the signal is either 

strictly increasing or decreasing with a distinct change of 

slope, which can be detected using zero-crossings in the 

second derivative (Figure 2b). Therefore, slurs were 

identified using the number of inflection points of the 

second derivative (M″) when notches are not present (M′ < 

3), in a piecewise manner as shown in equation 3 where 

QRSon and QRSoff are detected onset and offset of QRS 

complex and T is the time corresponding to inflection 

point. The onset and offset of the slurs were determined the 

same manner it was done for the notches, but with zero-

crossing detection on second derivative. 
 

[𝑄𝑅𝑆𝑜𝑛 , 𝑇1]   𝑎𝑛𝑑   [𝑇1, 𝑄𝑅𝑆𝑜𝑓𝑓]     𝑓𝑜𝑟    𝑀′ = 1 

[𝑄𝑅𝑆𝑜𝑛 , 𝑇1]  [𝑇1, 𝑇2]  𝑎𝑛𝑑  [𝑇2, 𝑄𝑅𝑆𝑜𝑓𝑓]  𝑓𝑜𝑟   𝑀′ = 2  (3) 
 

Once the slurs and/or notches were detected, it was 

checked whether the onset satisfies the “strict” LBBB 

criteria by checking 𝑄𝑅𝑆𝑜𝑛 + 40 ≤ 𝑡𝑜𝑛 ≤ 𝑄𝑅𝑆𝑜𝑛 +
𝑄𝑅𝑆𝑤  where ton is the onset of notch or slur. 
 

 

 

Figure 2. (a) First derivative of QRS complex on lead V1 

during a notch, which satisfies notch criterion: number of 

inflection points (𝑀′) equals 3. (b) Second derivative of 

QRS complex on lead V5 which satisfies slur criterion: 

number of inflection points (𝑀′′) equals 3. 
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2.4. Statistical Analysis 

 The “strict” LBBB detection performance of the 

algorithm and SVM classifier performance to detect QS- 

or rS- configuration were assessed using accuracy (Acc), 

sensitivity (Se), specificity (Sp), positive predictive value 

(PPV) and negative predictive value (NPV), as per 

equation 4 and confusion matrix (table 1) when presence 

of LBBB and presence of QS- or rS- configuration was 

considered as the positive class (+ve).  

 

   𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙
      𝑆𝑒 =

𝑇𝑁

𝑇𝑃 + 𝐹𝑁
     𝑆𝑝 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
     

              𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
       𝑁𝑃𝑉 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑁
            (4)  

 
Table 1. Confusion matrix. 

 
Classified 

+ve -ve 

A
n

n
o

ta
te

d
 

+ve 
TP: No. of +ve’s 

classified as +ve 

FN: No. of +ve’s 

classified as -ve 

-ve 
FP: No. of +ve’s 

classified as -ve 

TN: No. of -ve’s 

classified as -ve 

  

 The QRS detector performance was assessed using two 

metrics: difference between calculated onset and annotated 

onset (Δs) and difference between measured and annotated 

QRS width (Δd). The deviance from annotations was 

tested using one tailed t-test with null hypothesis: the 

difference is 0 with type I error set to 0.05. All statistical 

analysis was performed in Minitab® Statistical Software 

(Minitab 18, Minitab, Inc., State College, Pennsylvania, 

USA). 

3. Results 

The “strict” LBBB detection performance of the 

algorithm is summarized in table 2. The algorithm has 

similar performance metrics for initiative provided training 

and test datasets, which suggests that the rule-based 

approach is consistent. The algorithm performed well in 

terms of sensitivity but, relatively poorly on specificity due 

to false positives. However, the algorithm has good 

positive and negative predictive values on both datasets.  

 
Table 2. LBBB detection performance. 

Dataset 
Performance (%) 

Acc Se Sp PPV NPV 

Training  80 86 73 81 79 

Test 81 88 75 79 85 

 

The performance of the SVM classifier used to detect 

QS- or rS- configurations is summarized on table 3. The 

specificity and NPV on the test set indicates that the 

classifier has falsely detected 16% of QS- or rS- 

configurations. On both datasets the QRS onset was 

detected early (Δs = -1.8 ± 8.9 ms, p = 0.001 on the training 

set, Δs = -1.3 ± 9.2 ms, p = 0.015 on the test set) and 

calculated QRS width was wider (Δd = 8.2 ± 18.0 ms, p < 

0.0001 on the training set, Δd = 8.8 ± 19.0 ms, p < 0.0001 

on test set). These results suggest that errors in QRS 

detection and QS- or rS- detection can directly contribute 

to high false positives in LBBB detection. Errors in QRS 

detection can indirectly contribute to false positive LBBB 

detection as well by affecting the slur detection. 

 
Table 3. QS- or rS- configuration detection performance. 

Dataset 
Performance (%) 

Acc Se Sp PPV NPV 

Training  98 100 92 98 98 

Test 96 98 84 97 89 

 

4. Discussion 

“Strict” criteria for LBBB have been proposed to better 

predict patient benefit from CRT therapy. This study 

presents an algorithm to automatically detect the presence 

of “strict” LBBB on 12 lead Holter ECGs. The algorithm 

analyses the median beat combining rule-based methods 

with machine learning. The algorithm has performed well 

on sensitivity but relatively poorly on specificity which 

elicits high false positives.  

Errors caused by QRS onset detection and QRS duration 

calculation affect the LBBB detection when determining    
whether the onset of a slur/notch is within the specified 

region per “strict” criteria. For example, Figure 3 shows 

how a notch was missed due to late detection of QRS onset 

by 8 ms which caused the notch onset to be detected before 

40 ms with respect to detected QRS onset and hence, do 

not comply with notch/slur onset criterion. In this scenario, 

the calculated notch onset deviated from the annotated 

onset only by 1 ms.  

The slur detector is sensitive to minor slurring and/or 

artefacts which were not identified as slurs during 

annotation. The slur detector developed in this study 

adjudicated that the QRS complex contained a slur, if the 

Figure 3. An example of a missed notch detection due to late 

detection of QRS. (a) Annotated QRS complex and notch 

(b) Detected QRS complex and notch, ∆s = 8 ms and ∆d =
16 ms, thus notch onset is out of bound. 
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second derivative contained three zero-crossing points, 

regardless of how prominent the slur was (the degree to 

which slurring occurs) which is further explained in Figure 

4. This compromised the specificity and the positive 

predictive value of the algorithm by falsely detecting slurs.  

Even though the onset and offset of a notch could be 

clearly perceived, it is ambiguous and not clearly defined 

for a slur. In the literature, slurring is usually indicated as 

a point [9] rather than a duration with a clearly defined 

onset, but our algorithm detected onset and offset of 

slurring in an ad-hoc manner using zero-crossing points of 

the second derivative.  

 

5. Conclusion 

We developed an automatic “strict” LBBB detection 

algorithm using the time domain behavior of the median 

beat, its first derivative and second derivative. The 

algorithm has performed well in identifying “strict” LBBB 

cases but has a considerable number of false positives. The 

algorithm detected wide QRS complexes early and QS- or 

rS- configurations falsely, which caused false positives. 

Improving QRS detection, QS- or rS- configuration and 

slur detection can further improve LBBB detection. More 

clear definition of slurs in terms of the onset and offset 

would facilitate such improvements. 
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Figure 4. Examples of slur detection by algorithm: 3 zero-

crossing points on second derivative of QRS complex 

(indicated with arrows) whereas (a) is annotated as a slur and 

(b) is not annotated as a slur and could resemble an artefact. 
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