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Abstract

Introduction Pulmonary vein isolation (PVI) is the cor-
nerstone of atrial fibrillation (AF) ablation. However, it is
still unclear how AF complexity observed on body surface
is affected by this intervention. This study aims to evaluate
whether PVI has an impact on AF complexity as measured
through principal component analysis (PCA) of body sur-
face potential maps (BSPMs). Methods BSPMs were ac-
quired with a 252-lead vest in 22 persistent AF patients
(20 male, 62 + 11 years, maximum AF duration: 10 £+ 18
months) before and after PVI. The atrial fibrillatory wave
signal (9+£6 s) was divided in 0.5-s segments, and AF com-
plexity was assessed by the normalized amplitude norm d.
and the cosine similarity cos(ae) of the multilead error
€ between the input signal at the frame (s) and its PCA
projection onto a 3D subspace computed in the previous
segment (s — 1). AF organization was also quantified by
the nondipolar component index (NDI), i.e., the amount of
energy non-preserved by the 3D dipolar approximation of
cardiac activity in the frame (s). Results A significant re-
duction in AF complexity was measured by all markers af-
ter PVI (de and cos(ae): p<0.01; NDI: p<0.0001). Con-
clusions AF complexity can be reliably measured by the
proposed BSPM features and reflect the impact of PVI.

1. Introduction

Pulmonary veins (PVs) have been demonstrated to often
play a critical role in the pathogenesis of atrial fibrillation
(AF) [1]. Currently, PV isolation (PVI) is the cornerstone
for catheter ablation (CA) of paroxysmal AF. While the ef-
fectiveness of PVI alone for persistent AF treatment is still
under debate [2, 3], none of the alternative ablation proto-
cols so far proposed [4—6] has convincingly contributed to
improve its outcome [7,8], and PVI is still a first-line strat-
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egy for AF ablation, either alone or in combination with
additional lesions [9]. Multiple studies have demonstrated
that the electrophysiological and anatomical properties of
PVs create a proarrhythmogenic substrate [10], including
larger size, thicker myocardial tissue, shorter refractory pe-
riods and slower conduction velocity [11]. Electrical isola-
tion of PVs can help neutralizing arrhythmogenic sources,
either focal or reentrant, and preventing their propagation
to other atrial regions [12, 13]. PVI significantly affects
atrial substrate, whose activity appears less fractionated
and slower than at baseline [14]. Changes in the domi-
nant frequency are also detectable on the standard electro-
cardiogram in response to PVI [15], although with some
variability across the leads. More generally, AF complex-
ity quantified by principal component analysis (PCA) of
body surface potential maps (BSPMs) correlates with CA
duration and strategy and is predictive of its outcome [16].
This study aims to investigate to which extent PVI affects
AF organization measured from BSPMs. Variations in sig-
nal features determined by PCA as in [16, 17] were linked
to changes in AF complexity occurring during PVI. Our
approach provides deeper insights into the efficacy and the
relevance of this intervention to persistent AF treatment.

2. Methods

2.1. AF electrophysiology study and CA
protocol

We enrolled 22 persistent AF patients (20 male, 62+ 11
years old, maximum AF duration: 10 4+ 18 months) re-
ferred for CA. Biatrial electroanatomical mapping was
performed with a multipolar catheter (Pentaray or Lasso,
Biosense Webster), and atrial electrograms were contin-
uously recorded through a computer-based digital ampli-
fier/recorder system (Labsystem Pro, Bard Electrophysiol-
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ogy). Cycle length (CL) was measured in the left atrial ap-
pendage (LAA) at baseline and monitored during the pro-
cedure to assess local CA impact in the LA. All patients
first underwent circumferential PVIL. If AF was not termi-
nated by PVI, extra-PV regions identified through noninva-
sive phase mapping were targeted [6]. The procedural end-
point was AF termination, i.e., organization to atrial tachy-
cardia (AT) or sinus rhythm (SR). Electrical cardioversion
was performed if CA failed to terminate AF.

2.2. BSPM data format and preprocessing

BSPMs were acquired with a 252-lead vest (ECVUE,
Cardioinsight Technologies) at 1 kHz before and after PVI.
The multilead atrial fibrillatory wave (f-wave) signal (9£6
s) was processed as in [16], yielding a L x N matrix Y =
[y(1)...y(N)] € REXN where L = 252 is the number of
BSPM leads, and NNV is the number of samples. An example
is shown in Figure 1.
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Figure 1. An example of f-wave signal segmented be-

tween the offset to the T wave (TorpseT) and the onset of
the following Q wave (QonsgT) from a BSPM during AF.

2.3. AF complexity features from BSPMs

Multivariate measures of AF complexity were computed
by PCA as in [17]. Body surface heart electrical activity
can be modeled as a 3D dipole [18], and most of its energy
can be well approximated by the 3 dominant PCA eigen-
vectors [19]. Accordingly, the input atrial signal Y was
divided in 0.5-s frames, each projected on the 3D subspace
M) determined by PCA in the previous segment:

v+l — M(S)(M(S))#Y(S+1) 1)

where (-)# is the MoorePenrose pseudoinverse operator.
AF spatiotemporal organization was described in terms of
the ability of the PCA components determined in the frame
(s) of the f-wave signal to be retrieved in (s+1): the lower
their repetitiveness, the higher signal complexity. Thus, we
assumed that the instantaneous PCA estimation error €(¢)
between the input signal y(**1) () at the frame (s+1) and

its PCA estimation §(**1) (¢) was linked to AF complexity
and expressed in terms of the normalized magnitude norm:
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with higher de¢ values describing more disorganized AF,

and cosine similarity, ranging from O to 1 (from low to
high AF complexity):

de(t) = 2
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For the statistical analysis, the temporal average of these
indices over each frame was considered. AF organiza-
tion was also measured by the nondipolar component index
(NDI), i.e., the energy retained by the PCA eigenvalues oy,
¢ =4,..., L outside the subspace M(®) at the frame (s):

cos(€)(t)
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with low NDI values associated with more organized AF
patterns, which were accurately reconstructed by PCA.

2.4. Statistical analysis

The impact of PVI on body surface cardiac activity was
assessed in terms of intraprocedural variations in the PCA
markers of AF organization in the whole dataset. The same
analysis was then performed in two subgroups of AF pa-
tients, i.e., those who were free from AF at the end of the
entire procedure (“Termination”) and those who did not
experience AF termination by CA (“No termination”). To
evaluate whether atrial substrate could be affected by PVI
even in patients with more advanced AF forms, AF orga-
nization was also assessed before and after PVI both in
persistent and long-lasting AF patients. Finally, we veri-
fied whether the location of the AF termination site in the
left or the right atrium (LA vs RA) could be related to PVI
efficacy as measured by PCA features.

Lilliefors test for normality was applied to all indices. A
one-sample t-test was used to verify whether CL variations
were significantly different from zero. Intergroup compar-
isons between BSPM features computed at a specific mo-
ment of the procedure (i.e., “Before PVI” or “After PVI”)
were made with an unpaired t-test for normally distributed
data, or with a Mann Whytney test otherwise. Differences
between pre- and post-PVI parameters were also tested for
each group. Significance was taken for p-value<0.05.

3. Results
3.1. AF mapping and ablation

As in [16], patients with AF duration of <12 months
were assigned to the persistent AF group (n=18), whereas
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3 patients were diagnosed with long-lasting AF (>12
months). AF duration was unknown in one patient. Base-
line AF CL was 179 £+ 36 ms. Mean ablation time was
61 & 25 min and 5 + 3 atrial regions were targeted to ter-
minate AF. AF was terminated in the PVs in 4 patients, in
other LA sites in 2 patients, in the RA in 4 patients. AF
was organized to AT in 4 patients, to SR in 6 patients.

3.2. PVI and body surface AF complexity

A significant reduction in AF complexity was measured
by all PCA features after PVI (Figure 2). This evidence
was corroborated by a significant prolongation of the initial
AF CL (ACL: 10 £ 12 ms, p=0.002).
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Figure 2. AF complexity and PVI (n=22).

In persistent AF patients higher organization was mea-
sured by all indices after PVI, whereas in more severe
cases changes in the atrial substrate due to this intervention
could not significantly reflect on body surface (Figure 3).
Surprisingly, BSPM complexity at baseline was higher in
persistent rather than long-lasting AF patients, whereas it
was comparable in both groups after PVIL.
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Figure 3. AF complexity in persistent (n=18) and long-
lasting (n=3) patients before and after PVI.

AF complexity from BSPMs was lower after PVI re-
gardless of CA outcome (Figure 4), with slower AF CL
both in patients with (ACL: 14416 ms, p=0.04) and with-
out AF termination (ACL: 8 + 9 ms, p=0.02), and com-
parable in both groups (p=0.3). Higher AF organization
at baseline predicted AF termination by CA, whereas there
were no intergroup differences after PVI.
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Figure 4. AF complexity for effective (n=10) and failed
(n=12) CA procedures before and after PVI.

There were no changes in BSPM complexity in patients
with AF termination in the LA, whereas AF was more or-
ganized after PVI when the termination site was located in
the RA (Figure 5). While all indices measured lower base-
line AF complexity when the CA endpoint was achieved in
the LA, after PVI they underlined higher AF organization
in patients who were free from AF after RA ablation.
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Figure 5. AF complexity for patients with AF termination
in the LA (n=6) and the RA (n=4) before and after PVI.

4. Discussion

PVI significantly alters the atrial electrophysiology.
Such modifications reflect on body surface as well, and
they were effectively assessed by our PCA approach.

Electrical isolation of PVs substantially altered the
atrial substrate in persistent AF patients, but not in the
long-lasting ones, thus suggesting the presence of other
drivers [20], which may be located at extra-PV sites and
require a more extensive ablation [16].

As in [15, 16], more organized AF forms were more
likely to be successfully treated by CA. Importantly, our
method underlined how PVI contributed to modify the
atrial substrate and simplify arrhythmia mechanisms, even
when CA endpoint was not reached. These findings sug-
gest that in some patients PVs may not only trigger AF, but
also provide a substrate for its maintenance [21].

Our approach underlined higher disorganization at base-
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line in patients with AF termination in the RA, which hints
at the implication of other drivers from this anatomical
structure in AF maintenance [6]. In those subjects lower
post-PVI BSPM complexity was measured, thus proving
the major role of PVs in AF initiation and perpetuation.
Albeit PVI contributed to organize LA activity (as con-
firmed by the prolongation of the LAA CL: ACL: 26 £ 11
ms), AF was still ongoing, partly due to other drivers in
the RA, whose suppression was more crucial to reach the
CA endpoint. By contrast, CL variations were more mod-
erate when AF was organized in the LA (ACL: 6 + 14 ms)
rather than in the RA (p=0.04), thus confirming that PVs
were less critical to treat AF than other LA sites.

5. Conclusions

This study showed that our PCA approach can quantify
AF complexity and assess the impact of PVI, which plays
a crucial role in AF ablation. However, our results confirm
that sometimes PVI alone may not be sufficient to termi-
nate AF, and the underlying mechanisms should be clari-
fied and validated by further intracardiac measures.
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