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Abstract 

Background: Ventricular tachycardia (VT) is 
dangerous irregularity of heart rhythm. VT may evolve 
into ventricular fibrillation (VF) which often leads to 
cardiac death. Therefore, fast automated detection of 
VF/VT events is of the utmost importance. Here, we 
present a method detecting VT and ventricular fibrillation 
(VF) events suitable for real-time application on 
continuously incoming ECG data. 

Method: We designed a method for detection of VF/VT 
events in short-time (3 s), 1-lead ECG blocks. Five 
features are extracted from this block using analysis of 
ECG spectra, derivatives, amplitude measures and auto-
correlation. The extracted features are fed into a logistic 
regression model showing the probability of a VF/VT 
event. The model was trained on the public PhysioNet 
CUDB dataset consisting of 393 automatically selected 
blocks. 

Results: The model (AUC 0.99) showed a sensitivity 
and specificity of 95 % and 97 %, respectively (5-fold 
cross-validation). The model was tested on the public 
PhysioNet VFDB dataset, showing specificity and 
sensitivity of 95 % and 83 %, respectively. Both the 
feature extraction code (Matlab format) and the model 
are publicly accessible and easy implementation of the 
logistic regression model predetermines it for real-time 
applications. 

 
1. Introduction 

Ventricular tachycardia (VT) is life-threatening 
arrhythmia characterized as several (at least 3-5) 
ventricular beats at 100 bpm or more. Eventually, it may 
become ventricular fibrillation (VF), described as chaotic 
rapid contractions of ventricles. During VF, arterial blood 
pressure rapidly decreases meaning that there is no blood 
circulation. 

A complication in automated VF and, partially, VT 
detection is that QRS waveforms might not be detectable 
by QRS detectors due to their unusual morphology. 
However, the VF/VT repeating pattern is relatively easy 
to recognize by specialists. Therefore, existing studies 

usually focus on using autocorrelation [1], [2], Fast 
Fourier Transform (FFT) [3], [4] in short windows, 
digital filtering [5], a Threshold Crossing Intervals 
algorithm [6], and others. The extracted feature(s) are 
then checked to pass a threshold [7] or fed into some 
machine learning approach as shown later on multiple 
methods (neural networks, bagged trees, supported vector 
machines, etc.) presented in the PhysioNet Challenge 
2015 [8]. 

In this paper, we present a method for detecting 
VF/VT events from short time blocks which should be 
suitable for easy implementation in hand-held devices. 
 
2. Method 

The presented method is designed to process short-
time (3-sec) blocks of 1-lead ECG files. The ECG signal 
is detrended, filtered (FFT band pass 1-35 Hz) and 
normalized to the range <0;1> (ECGPR). In order to detect 
a VF/VT event, five features are extracted from this short-
time ECG. 

 
2.1. Feature extraction 

The first feature – AmpRatio – is based on frequency 
analysis. We noticed that higher harmonics in VF/VT 
areas decrease faster in comparison to non-VF/VT areas. 
Maximal peak is found in FFT spectra (above 2 Hz); then 
an amplitude if its 2nd harmonics is compared to an 
amplitude of that maximal peak. 

The second feature – RatioDiff – compares amplitudes 
in the filtered signal and its derivative, because a VF/VT 
signal should contain mostly “steep” areas, while regular 
ECG does not. RatioDiff is computed as: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑃90 |𝑑𝑑𝑑𝑑(𝐸𝐸𝐸𝑃𝑃)|

𝑃90(𝐸𝐸𝐸𝑃𝑃) − 𝑃10(𝐸𝐸𝐸𝑃𝑃) 

 
where P denotes the nth percentile. 

The third feature – VR – is computed as the minimal 
variation range (max-min) of ECGPR in a 0.15 sec floating 
window with a 0.075 sec step. 
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The fourth feature – Corr85 – is sensitive to the 
expected cyclic behaviour of VF/VT. The inner third of 
ECGPR is correlated through the whole ECGPR; the 
Corr85 is then computed as the 85th percentile of the 
correlation result. 

The last, fifth feature – MeanPC – is also based on the 
correlation result used for Corr85. Peaks are extracted 
from the correlation result (min. distance 0.1 s, min. 
height Corr85). The MeanPC is then computed as the 
mean peak amplitude. 

 
2.2. Model training 

The presented features were extracted for 393 
automatically selected blocks from the public CUDB [9] 
database available at PhysioNet [10]. 194 blocks were 
labelled as VF, 5 as VT, 184 as normal and 10 as noisy; 
the original labelling was used. VT and VF blocks formed 
the positive group, other blocks formed the negative 
group. If multiple labels belonged to a 3-sec ECG block, 
then VF/VT labels were preferred. Next, the logistic 
regression model (5-fold cross-validation) was trained 
using the Matlab® software version 2017b and Machine 
Learning and Statistics Toolbox. The generated model is 
shown in Table 1. 

 
Table 1. Model features. The P-value of features #1-5 is < 
0.001. 

 
Number Text  Estimate 
 (intercept) -1.2677 
#1 AmpRatio -147.1494 
#2 RatioDiff -60.2266 
#3 VR 16.2199 
#4 Corr85 12.4347 
#5 MeanPC -12.7446 

 
3. Results 

Training results for the CUDB dataset (5-fold cross-
validation) showed a sensitivity and specificity of 0.95 
and 0.97, respectively (Tab. 2). The presented model was 
also tested on an independent VFDB dataset [10], 
showing sensitivity and specificity of 0.95 and 0.83. 
Furthermore, Table 2 and Figure 1 present detailed results 
for specific classes using the VFDB database. Both the 
VFDB and CUDB databases were sampled at 250 Hz 
with 12-bit resolution. 

 
Table 2. Model results on the training (CUDB) and 
testing (VFDB) datasets. 

 
Dataset Sensitivity  Specificity 
CUDB 0.95 0.97 
VFDB 0.95 0.83 

Table 3. Test results on the VFDB dataset for specific 
classes. AF – atrial fibrillation, AS – asystole, BI – PVC 
bigeminy, N – normal sinus rhythm, X – noisy, VF – 
ventricular fibrillation, VT – ventricular tachycardia. SD 
– standard deviation, CI – confidence interval of mean. * 
– these CI values were trimmed to the range <0-1>. 

 
Class Count Mean  SD 95% CI 
AF 7 0.001 0.003 0.000*:0.003 
AS 24 0.223 0.370 0.067:0.379 
BI 15 0.151 0.255 0.010:0.292 
N 37 0.234 0.347 0.117:0.352 
X 35 0.262 0.306 0.157:0.367 
VF 41 0.944 0.182 0.887:1.000* 
VT 82 0.903 0.218 0.855:0.951 

 
 
 

 
Figure 1. Test set results computed for the VFDB 
database using the presented logistic regression model. 
Probabilities over 0.5 were considered VF/VT. AFIB – 
atrial fibrillation, ASYS – asystole, BI – PVC bigeminy, 
N – normal sinus rhythm, NOISE – noisy signal, VF – 
ventricular fibrillation, VT – ventricular tachycardia. 
 

 
Figure 2 shows 12 examples of different ECG blocks 

processed by the presented method. It also shows feature 
values as well as method output: probability in a range  
0-1 where values higher than 0.5 mean VF/VT 
classification. 
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Figure 2: Examples of ECG blocks from training set (generally CUDB database; VFDB database where noted) with 
extracted feature values and output of logistic regression model. An output value higher than 0.5 refers to VF/VT, 
otherwise it is considered non-VF/VT. Features are numbered in accordance with Table 1. The raw signal extracted 
from CUDB/VFDB databases is shown. 
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Discussion 

The presented model performed perfectly during cross-
validation tests on the CUDB dataset. However, although 
it achieved the same sensitivity on the (testing) VFDB 
dataset, the results on VFDB showed weaker specificity. 
A detailed view on specificity showed that the biggest 
deficit comes from misclassification of normal blocks 
(spec. 78 %) and asystolic blocks (79 %). While the lower 
specificity in normal recordings should be further 
investigated, in the case of asystoles it may be explained 
as a side effect of signal normalization. On the other 
hand, the highest specificity was measured in atrial 
fibrillation blocks (100 %, though limited by the low 
number of cases) and noisy blocks (86 %). 

From the point of view of implementation, the logistic 
regression model is easy to implement. Moreover, 
processing of 3-sec data blocks is computationally 
undemanding (if common ECG sampling frequencies are 
used). Therefore, the presented study may be considered a 
solution for miniature devices needing quick and 
automated notification of a VF/VT event. 

However, several limitations should be considered. 
Firstly, both the CUDB and VFDB datasets consisted of a 
low number of recordings (35 in CUDB, 22 in VFDB). 
This limits the number of morphological variants of 
specific arrhythmia events. Also, blocks extracted from 
the CUDB dataset contain only 5 cases of VT. This 
hardly affected the test results on VFDB due to the fact 
that VTs in VFDB usually have a similar morphology to 
VFs. However, we feel that this similarity between VF 
and VT morphology in VFDB is the most dangerous 
limitation of this study. Therefore, we expect decreased 
sensitivity in ECG recordings when VT is not followed 
by VF. 

Future work should include a parallel model retrained 
for these VT cases, as we have already found that features 
#1 (Tab. 1 – AmpRatio) and #3 (Tab. 1 – VR) have 
different trends for VTs acquired from a private dataset 
(ECG Holters, non-hospitalized patients). 

 
 

Conclusion 

We presented a logistic regression model detecting 
VF/VT events. The results have shown that it has a strong 
capability to capture these events from short (3-s) ECG 
blocks. The low number of features (5) and easy 
implementation of the logistic regression model are aimed 
at hand-held devices. The feature extraction code as well 
as the model are publicly accessible under an MIT licence 
at Github repository (https://github.com/fplesinger). 
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