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Abstract

Heart rate (HR) response to exercise and recovery are
strong predictors of cardiovascular mortality, but the HR
profile morphology may add useful information for the
identification of subjects at risk. Our aim was to char-
acterise the HR profile morphology and assess its car-
diovascular risk predictive value. 1-lead ECG record-
ings of 17,691 participants from the general population
in an exercise stress test from the UK Biobank study were
analyzed. A methodology based on time warping of the
HR profile was applied to compute the average HR pro-
file morphology along the exercise test. Then, two series
of warping-based morphological differences in amplitude,
da, and time, dw, were calculated by comparing each indi-
vidual HR profile morphology with respect to this average
HR profile. Subjects who suffered one or more cardiovas-
cular events showed significantly lower values of da than
survivors (median of -10.5% vs -7.5%, p=0.009). Also, da
was significantly associated with cardiovascular mortal-
ity in a Cox model after adjusting for clinical variables,
resting HR, difference between peak and resting HR, or
between peak and recovery HR after a follow-up period
of five years (p<0.0001). Individuals at risk show HR dy-
namics with slower adaptation to exercise than healthier
subjects, possibly due to autonomic nervous system dys-
function.

1. Introduction

Several studies have demonstrated that indices of HR
dynamics during exercise and recovery predict cardiac
death [1, 2], and genetic studies are being undertaken on
these phenotypes [3]. However, these measures only pro-
vide a rather simplistic description of the HR dynamics.
We hypothesized that an index designed to better capture
the HR profile morphology during the entire exercise stress

test would show a better association with cardiovascular
risk as compared to the HR responses to exercise or to re-
covery alone.

Two markers, dw, and da, have been previously pro-
posed to quantify single-lead T-wave morphological vari-
ability [4]. The amount of warping needed to remove the
time domain variability, is measured by dw, while da quan-
tifies the amplitude variability after removing the tempo-
ral domain variability. Both indices have been used to
quantify T-wave morphological variations to predict sud-
den cardiac death [5, 6].

The aim of this study was (1) to quantify the morpholog-
ical variability of the HR profile during an exercise stress
test with respect to an average HR profile morphology us-
ing da and dw, (2) to assess their cardiovascular risk pre-
dictive value, and (3) to characterize the HR profile mor-
phology across different risk groups based on the values of
da.

2. Materials and Methods

2.1. Materials

This work has been performed using data from N =
17,691 participants in the Cardio physical fitness assess-
ment within the UK Biobank (UKB) project from 2009 to
2013 [7]. The test uses cycle ergometry on a stationary
bike in conjunction with a 1-lead ECG to record ECGs at
rest (15 s pre-test), during graded activity (6 min) and in
recovery (1 min). The absolute maximum workload was
calculated by adjusting for age, height, weight, resting HR
and sex. The UKB study was approved by the North West
Multi-Centre Research Ethics Committee and all partici-
pants provided written informed consent to participate in
the UKB study.

Clinical data, including gender, age, body mass index
(BMI), diabetic status, diastolic and systolic blood pres-
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Overall population Survivors Cardiovascular risk p value
(n = 17, 691) (n = 17, 356) (n = 335)

Gender [men] 8,149 (46.1%) 7,914 (45.6%) 235 (70.1%) <0.0001
Age [years] 59 (13) 59 (13) 63 (8) <0.0001
BMI [kg/m2] 26.5 (5.58) 26.37 (5.33) 27.96 (5.68) <0.0001
Diabetic 873 (5.0%) 843 (4.9%) 30 (9.0%) 0.001
Smoker 7,649 (43.2%) 7,484 (43.1%) 165 (49.3%) 0.026
DBP 81.0 (13.5) 81 (13) 83.5 (13) 0.001
SBP 136.0 (24.5) 136 (24) 141.5 (24.8) <0.0001
High cholesterol 2,256 (12.8%) 2,186 (12.6%) 70 (20.9%) <0.0001
Maximum workload [Watt] 80 (40) 80.0 (30) 90.0 (39) 0.015
Resting HR [bpm] 71.0 (15.33) 71 (15) 71 (16) 0.939
∆HRex [bpm] 42.0 (16.5) 42 (16) 37 (16) <0.0001
∆HRrec [bpm] 30.0 (13.0) 31 (14) 27 (14) <0.0001
da [%] -7.6 (21.0) -7.5 (21.0) -10.5 (20.6) 0.007
dw [s] -1.5 (1.8) -1.5 (1.8) -1.1 (1.8) 0.009
Data are presented as absolute frequencies and percentages and as median (interquartile range). BMI = Body
mass index, DBP = Diastolic blood pressure, SBP = Systolic blood pressure, HR = Heart rate, bpm = beats
per minute. Significant differences between survivors and cardiovascular risk groups are indicated in bold.

Table 1. Clinical variables and HR profile indices in the general population

sure (DBP and SBP), and cholesterol levels were collected
the day of the exercise protocol (Table 1).

The primary endpoint of this work was cardiovascu-
lar risk, including death or admissions to hospital due to
coronary artery disease, heart failure, arrhythmias, cardio-
vascular disease or ischaemia, and conduction disorders.
Data from health records and death certificates were sent
to UKB on a quarterly basis up to March 2016.

2.2. Methods

2.2.1. Derivation of the Heart Rate Profiles

The HR measurements were available for download-
ing from UK Biobank. The HR profile represents the HR
dynamics during the bike test and is defined as a function
of time, fsi (t

s
i ), where tsi = [tsi (1), ..., tsi (Ns)]

> and Ns
being the total duration of tsi in samples, obtained by filter-
ing each i-th instantaneous HR (i =1,· · · ,N) with a median
filter over 15 beats to eliminate respiratory sinus arrhyth-
mia and low frequency oscillations [8], after interpolating
and low pass filtering at 4 Hz.

Each individual HR profile was normalised (subtract-
ing the resting HR and dividing by the standard deviation)
prior to further analysis to exclusively capture variations
in the HR profile morphology, and make the morphologi-
cal indices independent from the resting HR, peak exercise
HR or HR at recovery.

2.3. Mathematical Framework

Let fr(tr) = [fr(tr(1)), ..., fr(tr(Nr))]
> and

fs(ts) = [fs(ts(1)), ..., fs(ts(Ns))]
> be two HR pro-

files, where tr = [tr(1), ..., tr(Nr)]
> and ts =

[ts(1), ..., ts(Ns)]
> and Nr and Ns being the total dura-

tion of tr and ts, respectively, in samples. We take fr(tr)

as the reference HR profile and fs(ts) as the HR profile to
be compared with respect to fr(tr).

Let γ(tr) be the warping function that relates tr and
ts, such that the composition [fs ◦ γ](tr) = fs(γ(tr))
denotes the time domain warping of fs(ts) using γ(tr).

The square-root slope function (SRSF), qf (t), of a
function f(t) is defined as the square-root of the deriva-
tive of f(t), considering the sign [9]. Then, as demon-
strated in [10], the optimal warping function is the one
that minimizes the amplitude difference between the SRSF
of fr(tr) and fs(γ(tr)), qfr (tr) and q[fs◦γ](t

r) =

qfs(γ(tr))
√
γ̇(tr), respectively [9]:

γ∗ (tr) = arg min
γ(tr)

(∥∥∥qfr (tr)− qfs (γ (tr))
√
γ̇ (tr)

∥∥∥) .(1)

The dynamic programming algorithm was used to ob-
tain the solution of this optimization [11].

We used a previously defined metric, dw [4], to quantify
the level of warping needed to optimally align any two HR
profiles:

dw =
1

Nr

Nr∑
n=1

|γ∗ (tr (n))− tr (n) |. (2)

The normalised amplitude difference between fr(tr)
and fs(γ∗(tr)) is quantified as:

da =
1
Nr

∑Nr

n=1 f
s (γ∗ (tr (n)))− fr (tr (n))

1
Nr

∑Nr

n=1 f
r (tr (n))

× 100.

(3)

2.3.1. Mean warped HR profile

From the set of N HR profiles, we calculated an ini-
tial mean warped HR profile that is an optimal representa-
tive average both in temporal and amplitude domains. The
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Univariate Multivariate
Hazard ratio p value Hazard ratio p value(95% CI) (95% CI)

Gender [men] 2.75 (2.18-3.47) < 0.0001 3.55 (2.56-4.93) < 0.0001
Age [per 1 SD increment] 1.76 (1.55-2.00) < 0.0001 1.56 (1.33-1.82) < 0.0001
BMI [per 1 SD increment] 1.29 (1.17-1.42) < 0.0001 1.33 (1.19-1.49) < 0.0001
Diabetic 1.99 (1.37-2.87) < 0.0001 1.49 (1.01-2.20) 0.049
Smoker 1.29 (1.04-1.59) 0.022 1.00 (0.80-1.26) 0.969
DBP [per 1 SD increment] 1.18 (1.06-1.31) 0.002 0.97 (0.83-1.14) 0.697
SBP [per 1 SD increment] 1.38 (1.24-1.53) < 0.0001 1.05 (0.92-1.20) 0.511
High cholesterol 1.85 (1.42-2.40) < 0.0001 1.19 (0.90-1.57) 0.225
Maximum workload [per 1 SD increment] 1.14 (1.03-1.27) 0.016 0.72 (0.60-0.87) 0.001
∆HRex [per 1 SD decrement] 1.39 (1.23-1.56) < 0.0001 1.08 (0.94-1.22) 0.261
∆HRrec [per 1 SD decrement] 1.30 (1.16-1.47) < 0.0001 0.91 (0.78-1.08) 0.253
da [per 1 SD decrement] 1.16 (1.04-1.29) 0.009 1.31 (1.16-1.47) < 0.0001

CI = confidence interval; BMI = Body mass index, DBP = Diastolic blood pressure, SBP = Systolic blood pressure,
HR = Heart rate, bpm = beats per minute. SD = Standard deviation. Statistically significant values are marked in bold.

Table 2. Association of clinical variables and HR profile indices with cardiovascular risk

methodology is explained in detail in [4]. We, then, re-
calculated the mean warped HR profile by only consider-
ing those individual HR profiles highly correlated (Spear-
man’s correlation coefficient >0.98) with the initial mean
warped HR profile.

2.3.2. HR profiles morphological differences

The morphological differences between each i-th
individual HR profile and the mean warped HR profile
were quantified using da and dw [4], creating da =
[da[1], · · · , da[N ]] and dw = [dw[1], · · · , dw[N ]].

We additionally calculated the HR response to exercise
(∆HRex) as the difference between the peak HR and the
resting HR, and the HR response to recovery (∆HRrec) as
the difference between the peak HR and the recovery HR.
Resting HR was defined as the mean HR during pre-test
period, peak HR as the maximum HR during exercise, and
recovery HR as the minimum HR 1 minute after the peak
exercise [3].

2.3.3. Risk HR Profile Morphologies

The population was divided into five balanced
groups according to the five quintiles of da and, in each
group, a HR profile representative of the average HR dy-
namics for that group along the exercise test was computed
using the same warping method described in [4].

2.4. Statistical Analyses

Two-tailed Mann-Whitney and Fisher exact tests
were used for univariate comparison of quantitative and
categorical data, respectively, to evaluate the association
of the clinical variables and indices derived from the HR
profiles with the primary endpoint.

Univariate and multivariate Cox regression analyses
were performed to determine the predictive value of the

clinical variables and indices derived from the HR profiles.
Backward analysis was applied with a retention criterion of
P <0.05. A value of P <0.05 was considered statistically
significant. Statistical analyses was performed using SPSS
version 25.0 (SPSS Inc, Chicago, IL).

3. Results and Discussion

Figure 1 shows the individual normalized HR pro-
files after time warping with the same mean warped HR
profile displayed in red bold. As it can be seen, the time
warping method corrects for the difference in duration of
each individual protocol. Thanks to the warping algorithm,
the HR profiles from these individuals can be still included
in the analyses, thus avoiding reduction in the sample size.
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Figure 1. fr(tr) (bold red) superimposed to fs(γ(tr)).

During the follow-up period there were 335 (1.9%)
deaths or hospitalisations due to cardiovascular disease.
Upon comparison of clinical variables between survivors
and cardiovascular risk groups (Table 1), there were sig-
nificantly more men, diabetics, smokers, and subjects with
high cholesterol in the cardiovascular risk group as com-
pared to survivors. This group was also characterised by
a significantly higher age, BMI, DBP and SBP. Analysis
of ECG markers during exercise shows that individuals in
this group had a significantly higher predicted maximum
workload and dw values, but significantly lower ∆HRex,
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∆HRrec, and da values. Resting HR was not significantly
different between both groups.

0 100 200 300 400

0

1

2

3

4

5

Figure 2. Five most representative HR profile morpholo-
gies corresponding to the first (blue), second (dashed red),
third (dotted black, corresponding to the mean warped HR
profile), fourth (dashed-dotted magenta) and fifth (cyan)
quintiles of da.

Univariate Cox analysis revealed that decrements in
∆HRex, ∆HRrec and da were associated with cardiovas-
cular risk, contrary to resting HR of dw (Table 2). Multi-
variate Cox proportional hazard models were constructed
by adjusting for all variables that were significantly associ-
ated with cardiovascular risk in the univariate model (Table
2). The index da remained significantly associated with in-
creased cardiovascular risk, independently of gender, age,
BMI, diabetic status and the maximum workload. The in-
dices ∆HRex and ∆HRrec lost their significant association.

The five mean warped HR profiles, representative of
the HR dynamics within each risk group defined by the
da quintiles are shown in Figure 2. Individuals in the first
quintile of da (blue HR profile) had a hazard ratio of 1.48
(95% CI 1.52-210, p = 0.012) compared to those in the fifth
quintile (cyan HR profile) in the Multivariate Cox model.

4. Conclusions

The morphology of the HR profile during an exer-
cise test provides information independent of the resting,
peak and recovery HR for cardiovascular event and mortal-
ity risk prediction. Individuals at risk show HR dynamics
with slower adaptation to exercise than healthier subjects
possibly due to an attenuated effect of the sympathetic ner-
vous system on HR or a reduced chronotropic competence.
Further studies will explore the contribution of genetics on
the morphology of HR profiles.
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