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Abstract 

Background: Sleep arousal is basically described as a 
shift in EEG activity in frequencies > 16 Hz for a 
duration of > 3 sec (by the American Sleep Disorders 
Association – ASDA). The number of these arousals 
during sleep is a reflection of sleep quality. In 
accordance with the PhysioNet/CinC Challenge 2018, we 
present a method for automatic detection of arousals in 
polysomnographic recordings. 

Method: Each file in the training dataset (N=994) has 
defined “Target Arousal Regions” (TAR, median length 
33 seconds); however, arousals were usually located in 
the right half of these TARs. We built a method detecting 
EEG frequency shift to locate arousals inside ARs: 
envelograms (14-20, 16-25 and 20-40 Hz) were inspected 
in a 3-sec floating window for an increase against a 10-
sec background. We then extracted 133,573 blocks with 
such a shift from TARs (N=38,628) as well as outside 
TARs (N=94,945). We extracted 23 features from these 
blocks (how many EEG channels/frequency bands EEG 
frequency shift; heart rate before/during arousal; airflow 
and EMG changes) and trained a bagged tree ensemble 
model (70/30 % hold-out). 

Results: The method showed AUPRC 0.27 on a 
training set and AUPRC 0.20 on a testing set (N=989). 

 
1. Introduction 

Sleep arousals disturb sleep and, therefore, affect sleep 
quality. Sleep arousals were defined by the American 
Sleep Disorders Association (ASDA) in 1992 as a shift in 
EEG activity in frequencies above 16 Hz for more than 3 
seconds [1]. Multiple other rules were defined, for 
example that at least 10 seconds of continuous sleep must 
precede such an EEG frequency shift to score this as an 
arousal. General rules for scoring arousals were further 
improved by the American Academy of Sleep Medicine 
(AASM) [2]. 

According to the AASM guidelines, arousals are 
usually scored in a 30-second window. Because an 
arousal must be preceded by at least 10 seconds of 
continuous sleep, this setup allows a wide baseline area 
for consideration of EEG frequency shift. However, how 
intense such a frequency shift must be or how long this 
baseline area should be are not exactly defined. 

 

The PhysioNet Challenge 2018 [3] was aimed at 
detection of target arousal regions (TAR). A TAR, 
according to the definition of the organizers, should be an 
arousal extended by 2 seconds prior to its start and 
prolonged by 2 or 10 seconds (depending on the kind of 
arousal). In this paper, we propose an automated method 
to recognize TARs in polysomnographic data. 
 
2. Method 

 
 
Figure 1. Method flowchart. EEG, EMG, ECG and 
airflow signals are loaded (A); envelograms are prepared 
from EEG signals (B); QRS complexes are detected in 
ECG (C). Hypothetical arousals (HA) are detected in 
places of EEG frequency shift (D). For each HA, features 
are extracted and processed with a bagged tree ensemble 
(E-G). HA is extended to “Target Arousal Region” (H), 
modified by time (I) and added to output vector(J). 
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We used Matlab® 2016b with the Machine Learning 
and Statistics Toolbox and Signal Processing Toolbox. 

The used public data consisted of a scored training 
dataset (N=994) and non-scored testing dataset (N=989) 
of whole-night polysomnographic data (fs=200 Hz). Both 
datasets were supplied by the Challenge organizers. 
Datasets contained 7x EEG channels, 1x EMG channel, 
1x ECG channel, respiratory curve and SaO2 saturation 
curve. 

The method flowchart is shown in Fig. 1. Since the 
elementary condition for sleep arousals is a shift in EEG 
activity, we decided to find such hypothetical arousals 
(HA) using EEG signals only. We then trained a bagged-
tree-ensemble model computing arousal validity; this 
bagged tree ensemble used additional information from 
EMG, ECG and airflow. We extended arousal borders for 
compliance with the PhysioNet Challenge 2018 and, 
finally, the probability received from the bagged tree 
ensemble was modified by the general probability of an 
arousal at a specified time of sleep. The method output is 
a vector of the same length as the input data; this vector 
indicates the probability of a TAR. 
 
2.1. Data pre-processing 

Each EEG channel (N=7, Fig. 2A) was transformed 
into 3 envelograms (14-20 Hz, 16-25 Hz and 20-40 Hz) 
using Fast Fourier and Hilbert transformations. All 
envelograms (N=21) were down-sampled to 50 Hz. Next,  
for each envelogram we computed continuous change in 

EEG amplitudes comparing a 3-s window to a 10-s 
window of preceding signal (step 0.5 s). Continuous 
changes higher than 1.1 were found; this threshold is 
arbitrary since no specific value was found in the 
literature. If such continuous change lasted at least 3 
seconds, it was accepted as an arousal-compliant EEG 
shift (ACES, Fig. 2B). Finally, for each 0.5-second 
window we evaluated the sum of registered ACES from 
all envelograms (each ACES was multiplied by its 
duration). This sum creates a single curve with maxima 
pointing to hypothetical arousal (Fig. 2C). 

 
2.2. Used features 

We detected these HAs in TARs (N=38,628) in areas 
scored as 1. We also detected HAs outside TARs (Non-
TARs, N=94,945) in areas scored as 0. A total of 23 
features (Tab. 1) were extracted for each HA, leading to 
an unbalanced training dataset of 133,573 cases. Since 11 
features were extracted from the EEG signal, we also 
extracted 7 features from ECG activity as heart rate or its 
changes; the rest were based on EMG and airflow signals. 
For QRS detection, we used a method designed for 1-lead 
Holter-ECG processing [4]. 

 
2.3. Model training 

We trained a bagged tree ensemble model leaving 
30 % of training samples for testing. The receiver-
operator curve showed AUC 0.95 with values of 

 
 
Figure 2. Method to find hypothetical arousals using information related to frequency shift in EEG. The EEG signal 
(A) was transformed into envelograms. Increases in EEG amplitude longer than 3 seconds were examined in three 
frequency bands (B). Next, this information is summed together from all envelograms (21) and summed together 
using increase duration as a weight (C). EMG (D) and Airflow channels are shown for convenience. 
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sensitivity and specificity of 0.79 and 0.94, respectively 
and accuracy of 90 %. However, it should be noted that 
this metric strictly describes ability of the classifier to 
identify real arousals in HAs; it is not the overall method 
performance. If any of the input features could not be 
computed, the HA was excluded from model preparation. 

 
Table 1. List of extracted features. ACES: Arousal-
Compliant EEG Shift; EEG: electroencephalogram; ECG: 
electrocardiogram; EMG: electromyogram; Breath – 
signal describing airflow. 

 
No. Feature description  Source 
1 Max. weighted ACES sum  EEG 
2 Number of ACES EEG 
3 Number of channels with ACES EEG 
4 Heart rate at ACES start ECG 
5 First derivative of #4 ECG 
6 Heart rate at ACES end ECG 
7 First derivative of #6  ECG 
8 Heart rate 10 s before ACES ECG 
9 Heart rate 10 s after ACES ECG 
10 Heart rate amplitude during ACES ECG 
11 Heart rate standard deviation ECG 
12 Heart rate std. 10 s before ACES ECG 
13 Ratio of std. deviation of heart rate 

10 s before and 2 s after ACES 
maxima 

ECG 

14 Mean airflow amplitude during 
ACES  

Breath 

15 Mean airflow amplitude in 10-sec 
window before ACES start  

Breath 

16 Ratio of features #14/#15 Breath 
17 Mean amplitude of Chin-Chin EMG 

signal during ACES 
EMG 

18 Mean amplitude of Chin-Chin 
signal 10 seconds before ACES 
beginning 

EMG 

19 Ratio of features #17/#18 EMG 
20 Maximal ACES length EEG 
21 Number of channels with ACES in 

band 14-20 Hz 
EEG 

22 Number of channels with ACES in 
band 16-25 Hz 

EEG 

23 Number of channels with ACES in 
band 20-40 Hz 

EEG 

 
 
2.4. Computing target arousal regions 

At this stage, the presented method was able to find 
and compute the probability of sleep arousals. The task of 
the Challenge was, however, to find TARs. Measured in 
the training dataset, the TARs duration median was 33.2 
s; the median offset of TAR start measured to the sleep 

arousal centre was 23.8 s and the median offset to TAR 
end was 8.6 s. Because we did not find any other logical 
link between TAR borders and sleep arousals, we 
extended each arousal centre to the left and right using 
these median values. Finally, the probability of each TAR 
was multiplied by the overall squared probability of sleep 
arousal (computed in 10-minute steps, Fig. 3). 

 

 
Figure 3. Squared probability of sleep arousal during 
sleep. These values multiplied the probability of arousal 
computed by the bagged tree ensemble. 
 
3. Results 

The results were evaluated on remote PhysioNet 
servers using a hidden dataset (Tab. 2). Performance in 
the Challenge 2018 was evaluated using area under 
precision-recall curve (AUPRC). During the evaluation 
on remote servers, it consumed (average) 3.93 % of the 
quoted running time. 
 
Table 2. Method performance on training and testing 
datasets. AUROC – area under receiver operating 
characteristics; AUPRC – area under precision-recall 
curve. 

 
 Training 

(N=998) 
Testing 
(N=988) 

AUROC 0.81 - 
AUPRC 0.27 0.20 

 
 

4. Discussion 

The presented method implements just 23 features, for 
which reason it could, from the perspective of machine 
learning, be recognized as light-weight (this could also be 
measured by the amount of computing time shown in the 
section Results). An elementary rule requiring a shift in 
EEG frequency led us to a simple way of predicting areas 
of hypothetical arousals and we were quite successful in 
recognizing real arousals in these areas (AUC-ROC 0.95). 
On the other hand, the results computed when identifying 
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TARs on the training and testing set in Tab. 2 showed 
weaker AUROC performance indicating that our 
approach to recognizing HAs is not as powerful as 
classification of real arousals in HAs.  

Moreover, we found it difficult to associate real 
arousals and TARs (and finding TARs was the goal of the 
challenge). Since the term “target arousal region” may be 
hard to find in the literature related to sleep arousals, 
definitions in the Challenge state that a TAR should 
specifically overlap sleep arousal. This overlap should be 
2 seconds for arousal beginning and 2 or 10 seconds for 
arousal end (different for respiratory effort related 
arousals – RERAs and for non-respiratory effort related 
arousals – non-RERAs). We showed that the median 
length of TAR is 33 seconds (derived from the training 
set). This would mean that median EEG arousal length 
should not be shorter than 21 seconds which seems 
unlikely. From our observations, TARs may be associated 
with the position of the screen used during arousal 
scoring; this would be in accordance with AASM 
guidelines suggesting that arousals should be scored using 
a 30-second window on the screen. 

We did not apply additional rules for scoring arousals. 
For example, we did not use a rule stating that a new 
arousal should not be scored if the distance from the 
previous one is shorter than 10 seconds [1]. Also, we did 
not distinguish between RERAs and non-RERAs; non-
RERA arousals used different offsets for TARs. This 
should be reconsidered because 99.6% of target arousals 
were RERA (unfortunately, we found this information 
after the end of the official phase of the challenge). The 
presented method did not use the SaO2 channel showing 
oxygen saturation in the blood. The reason for this was 
that we considered this information too noisy. On the 
other hand, as shown on the sample entry prepared by the 
Challenge organizers (and also considering the fact that 
most arousals were RERA), this information could be 
successfully used for recognizing target arousals.  

Reconsidering these missing points in the future could 
improve the results of the presented method. 

 
5. Conclusion 

We presented a method for automated evaluation of 
sleep arousals in polysomnographic studies. Although it 
showed high performance in finding sleep arousals in 
areas preselected using a shift in EEG frequencies, it 
achieved below-average performance when finding 
Target Arousal Regions (which was the task of the 
PhysioNet Challenge 2018).  
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