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Abstract 

Fetal phonocardiography (FPCG) is a non-invasive 

electronic recording of the acoustic cardiac signals. 

Unfortunately, FPCG is hidden by high-amplitude noise 

which makes detection of FPCG waveforms challenging. 

Aim of the study is to propose PCG-Delineator as an 

algorithm for automatic detection of the first and second 

heart sound (S1 and S2, respectively) from FPCG. To this 

aim, 37 simulated FPCG tracings (Physionet) are filtered 

by a wavelet-based procedure (4th order Coiflets mother 

wavelet with 7 decomposition levels) to erase noise. 

Successively, S1 and S2 are detected. S1 detection 

procedure is threshold-based (threshold=30% of the 

filtered FPCG signal maximum amplitude), under the 

condition that 40ms separate two consecutive S1 sounds. 

S2 detection procedure is also threshold-based, but under 

the conditions that S2 has to fall 100ms after preceding 

S1 and 200ms before successive S1, and that S2 has to 

have an amplitude lower than 80% that of preceding S1. 

Sensitivity (SE) and positive predictive values (PPV) were 

computed. Results indicate that PCG-Delineator was able 

to reduce noise (our SNR: from -1.1÷7.4dB to 

12.9÷17.9dB; P<10-14) and to accurately detect both S1 

(SE: 88%; PPV: 91%) and S2 (SE: 77%; PPV:99%). In 

conclusion, PCG-Delineator is an efficient algorithm for 

automatic heart sounds detection in FPCG.  

 

1. Introduction 

Fetal phonocardiography (FPCG) is a low-cost and 

non-invasive technique for the detection of fetal heart 

sounds (fHSs), recording the vibroacoustic signals from 

the maternal abdomen. FPCG signals analysis provides 

precious diagnostic information for proper fetal well-

being assessment during the period of pregnancy [1].  

Under normal condition, fHSs can be characterized by 

two major audible sounds for each cardiac cycle: the first 

heart sound (S1) and the second heart sound (S2) [2]. The 

S1 sound, marking ventricular systole onset, is due to the 

sudden closure of atrioventricular valves. This sound is 

characterized of two internal components: the mitral 

component, associated with the closure of the mitral 

valve, and the tricuspid component, associated with the 

closing of the tricuspid valve. The S2 sound, marking 

diastole onset, is made up of two components: the aortic 

component, corresponding to the closure of the aortic 

valve, and the pulmonary component, corresponding of 

the closure of the pulmonary valve. S1 sound typically 

contains low frequency with longest duration and highest 

intensity. Indeed, S2 sound presents smoother 

morphology with high frequency and shorter duration 

than the S1, making harder the detection of its location 

[3]. Unfortunately, fHSs are very weak acoustic signals 

and they are heavily loaded by external acoustic signals 

and electrical noise interference, due to maternal heart 

sounds, digestive sounds, breathing, maternal and fetus 

respiration movements. [4,5]. Thus, determination of 

fHSs raises serious signal processing issues, due also to 

non-stationary nature of FPCG signals.  
The development of an accurate and robust technique to 

detect fHSs has been since long researched. Many 

methods have been developed for FPCG segmentation 

and fHSs detection. Amplitude and/or time threshold-

based methods [6,7] probabilistic models-based methods 

[8,9], and energy-based methods [10,11] are developed to 

detect fHSs, but not considering the noisy environment of 

the FPCG signals. Thus, in a noisy environment, fHSs 

detection remains a challenging task and it is difficult to 

detect them accurately. Indeed, it is necessary to erase 

noise from the signals in order to make FPCG clinically 

usable. In this work, wavelet transformation (WT), a 

well-known denoising technique, have been proposed to 

filter FPCG [12,13]. In time-frequency analysis, WT 

processing is a useful tool for extracting local time-

frequency information from a nonstationary signal, such 

as FPCG. Thus, aim of the present study is to propose 

PCG-Delineator as a novel and efficient algorithm to 

achieve a clear separation and detection of the fHSs from 

WT denoised FPCG signal. 
 

2. Materials and methods 

2.1 Data 

Data consisted of 37 FPCG simulated tracings 

corrupted by different levels of noise, typically found in 

real recordings. Signals were generated as sequences of 
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simulated heart sounds, corrupted by additive white 

Gaussian noise. All recordings belong to the “Simulated 

Fetal PCGs database” [14] of PhysioNet [15] freely 

accessible on the web under the ODC Public Domain 

Dedication and License v1.0. The database may be used 

without further ethical committee approval. Simulated 

PCGs are 8 min long (sampling frequency: 1kHz), 

characterized by mean fHR of 140 bpm and SNR 

included between -26.7 dB and -4.4 dB.  

 

2.2 PCG-Delineator  

PCG-Delineator is an efficient algorithm for automatic 

HSs detection in FPCG. PCG-Delineator was 

implemented in Matlab; its block diagram is depicted in 

Figure 1. It operates in two consecutive steps, noise 

removal by WT filtering, and fHSs iterative detection. A 

detailed description of each step is reported below.  

Wavelet Transformation Filtering. Typically, FPCG 

signals are heavily contaminated by noise from various 

sources, due to fetus movement and mother heart sound, 

breathing, and muscular movements. In order to make 

FPCG clinically suitable to detect cardiac sounds, it is 

necessary to remove noise from the signals. Thus, PCG-

Delineator performed a FPCG filtering by means of a 

WT-based procedure, a flexible approach to signal 

decomposition (WT denoising, Figure 1). WT is a time-

frequency processing method that quantifies temporal 

changes of the frequency content of non-stationary 

signals [16]. WT of the input signal x(t) is defined as 

(Eq.1): 

          0a(t)dt   x(t) ΨCWT
*

ba,b)x(a, =                   (1) 

where the basis function (t)Ψ ba,
 is the mother wavelet, 

featured by scale and time-shift parameters, a and b, 

respectively (Eq.2): 
 

               ψ𝑎,𝑏(𝑡) =
1

√𝑎
𝜓 (

𝑡−𝑏

𝑎
) .                                      (2) 

(t)Ψ ba,
 is the transforming function (mother wavelet) that 

can be used for signal decomposition. WT approach 

offers better temporal resolution and scale (frequency) 

resolution when analyzing high frequency component and 

low frequency components respectively. WT decomposes 

a signal into several multiresolution coefficients and 

performs a series of high- and low-pass filter operations 

followed by down-sampling. WT preserves signal by 

operating only on those selected regions of the bandwidth 

that need filtering. Denoising algorithm uses statistical 
regression of noisy coefficients over time to obtain a 

nonparametric estimation of the reconstructed signal 

without noise. Thus, PCG-Delineator for denoising 

decomposed the corrupted signal into several levels. The 

decomposition processing allows to remove the level 

which seriously corrupted by noise. In level 

decomposition, wavelet coefficients tend to be much 

larger than those due to noise. Thus, coefficients below a 

certain level are regarded as noise and they are 

thresholded out. Then, the signal can be reconstructed 

without significant loss of information in the signal 

content. As WT is sensitive to noise level, WT-procedure 

requires appropriate selection of wavelet family, level of 

decomposition, and threshold for having better accuracy. 

In this work, decomposition, denoising and reconstruction 

were performed by mother wavelet Coiflets of 4th order 

with 7 levels of decomposition and soft threshold, 

providing the higher result for signal to noise ratio for all 

types of FPCG signal. Details of wavelet denoising 

algorithm are reported in [13].  

fHSs Iterative Detection. According to PCG-

Delineator, S1 and S2 sounds are detected from WT-

denoised FPCG. PCG-Delineator allowed to recognize all 

heart spikes and to identify which of them are S1 and 

which are S2. The PCG-Delineator algorithm to detect S1 

and S2 sounds is a threshold-based. Initially, S1 detection 

procedure set an amplitude threshold as 30% of the 

filtered FPCG signal maximum amplitude, under the 

condition that at least 40ms separate two consecutive S1 

sounds. This time condition allows to remove possible S1 

detections with no physiological meaning. In literature, it 

has been reported that, in non-pathological cases, S2 

follow S1 in a heart cycle [4]. Consequently, S2 

identification procedure, which is also based on a time-

threshold, is performed after S1 detection (Figure 1). 

Specifically, S2 identification is based on the 

consideration that diastolic duration (i.e. time distance 

between S2 and S1 sounds) is longer than systolic 

duration (i.e. time distance between S1 and S2 sounds) 

[17]. Thus, S2 detection procedure is threshold-based in 

both time and amplitude, under the conditions that S2 has 

to fall at least 100ms after preceding S1 and at most 

200ms before successive S1, and that S2 has to have an 

amplitude lower than 80% that of preceding S1 (S2 

detection, Figure 1).  

PCG-Delineator works iteratively: first, all potential 

S1 peaks are identified; then, distances between S1 peaks 

are computed to make a further control in time, in order 

to find all the S1 peaks that were not included in the first 

evaluation; once all S1 peaks have been localized and 

confirmed, S2 peaks are identified; eventually, S2 are 

confirmed by verifying their amplitude.   

 

2.3 Statistics 

Since original simulated signals and noise amplitudes 

were not available to reproduce the signal-to-noise ratio 

(SNR) values reported in the database, they were 

recomputed according to the definition reported in [13]. 

In order to evaluate their correctness, the Pearson 
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correlation coefficient (ρ) was computed. Automatic S1 

and  S2   detections   were   compared   against   provided 

 

Figure 1. The block diagram of PCG-Delineator. 

 

manual annotations and then they were classified as true 

positives, false positives and false negatives in order to 

quantify detection accuracy by means of sensitivity (SE) 

and positive predictive value (PPV). 

 

3. Results 

Computed SNR values ranged from -1.1dB to 7.4dB 

and were strongly correlated (ρ=1.0; P<10-200) with those 

provided in the database. Thus, they were reliable to 

measure signal quality improvements after WT noise 

filtration by PCG-Delineator. 

Results indicate that PCG-Delineator was able to 

drastically reduce noise. Indeed, after its application, 

SNR increased significantly (12.9÷17.9dB; P<10-14). A 

qualitative example of raw and denoised FPCG signal is 

reported in Figure 2 that displays raw FPCG signals with 

three different level of SNR (-4.4, -16.6, and -22.6 dB, 

grey line) and corresponding denoised FPCG signals after 

WT filtering (black line), respectively.  

Moreover, PCG-Delineator reliably detected location 

and morphology of the fHSs. Quantitative results relative 

to the performance of fHSs detection are reported in 

Table 1. SE and PPV values are both 100% for S1, and 

91% and 80%, respectively for S2. Eventually, for S1, SE 

and SNR are associated by a low but significant (ρ=0.66, 

P<0.05) correlation. Figure 2 qualitatively showed S1 and 

S2 sound detection (red and blue bullets, respectively), 

after the noise level was drastically reduced.  

 

4. Discussion 

The non-invasive routine measurement of fHSs is of 

great clinical relevance to assess fetal wellbeing, 

especially when associated to cardiotocography [18]. Its 

automatic  analysis  allows  to  overcome issues related to 

 

Figure 2. Noisy FPCG signals (in grey) with different 

SNR: -4.4 dB (upper panel), -16.6dB (central panel), and 

-22.6 dB (lower panel). Filtered FPCG signal (in black) 

with annotations of S1 and S2 (red dot and blue dot, 

respectively). 

 

Table 1. Statistics of fHSs detection by PCG-Delineator. 

SE, PPV and ρ (for SEvsSNR and PPVvsSNR) values for 

S1 and S2 are reported. 

*, P<0.05: statistical significance on the correlation 

 S1 S2 

SE (%) 
100 

[99 ; 100] 

91 

[88;99] 

PPV (%) 
100 

[100 ; 100] 

80 

[65;85] 

SNR (dB) 
15.9 

 [15.2; 16.3] 

15.9 

 [15.2; 16.3] 

SEvsSNR 0.18 0.66* 

PPVvsSNR 0.23 0.20 
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subjectivity and physician experience, which may bias 

diagnoses.  

This paper presented a newly developed PCG-

Delineator as an efficient and advanced algorithm for 

automatic fHSs from FPCG affected by varying levels of 

noise. PCG-Delineator has been applied to “Simulated 

Fetal PCGs database” [6,11] of PhysioNet [12] containing 

37 simulated FPCG affected by different levels of noise 

(original SNR ranged from -26.7 dB and -4.4 dB). 

Original and recomputed SNR values were perfectly 

correlated (ρ=1.0; P<10-200), indicating that they provide 

the same amount of information. To denoise FPCG 

signals, PCG-Delineator was based on WT approach, 

using Coiflets mother wavelet (4th order, 7 levels of 

decomposition). WT filtering significantly increased SNR 

values (P<10-14) and SNR values before and after WT 

filtering were associated by a low correlation coefficient, 

indicating that WT filtering is very robust to noise. 

Denoised FPCG were perfectly aligned (same S1 and S2 

location); thus, WT filtering introduces no signal delay 

and maintains unaltered FPCG characteristics. As shown 

in Figure 2, noise level was drastically reduced and fHSs 

becomes always visible; still, some noise survived to 

filtration, especially in signals initially characterized by 

very low SNR. In spite of this, PCG-Delineator 

application provided to accurately detect both S1 and S2 

from WT-filtered FPCG.  

Despite these promising results obtained in this work, 

future studies are needed with the aim to test PCG-

Delineator on real FPCG in order to confirm its clinical 

utility. 

 

5. Conclusion 

PCG-Delineator is a novel and efficient algorithm for 

automatic heart sounds detection in FPCG. PCG-

Delineator efficiently extracts fHS signals from noisy 

recordings and identifies S1 and S2 sounds.  Thus, this 

technique can be a promising fHSs segmentation tool, 

clearly contributing to better evaluation of the fetal heart 

functionality. 
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