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Abstract

There are evidences that the human right atrium and
sinoatrial node (SAN) are functionally separated except at
discrete SAN-atrial electrical junctions. We hypothesize
that such anatomy could be a source of re-entry around
the SAN.

A model was developed which reconstructs the human
right atrium anatomy. The activity of a myocyte was sim-
ulated by a timed automaton with continuous and discrete
transitions reproducing the known stages of the action po-
tential of the cellular membrane. A stochastic 2D net-
work of timed automata was designed to model the grid
of the right atrium. Discrete modeling allowed us to spec-
ify directly the rate of SAN to atrium pathways. Also, the
influence of (1) atrial tissue fibrosis, via probability for
transversal intercellular network connections, and of (2)
impairment of individual cells via probability of a cell to
excite, were controlled.

The simulations provided a critical relationship between
atrial anatomy and the rhythm of heart excitations. It oc-
curred that at probability of 1/8 of SAN-atrium pathways
(randomly chosen), the occurrence of the normal rhythm
attained the highest probability — close to 1, in large in-
tervals for the density of transversal intercellular connec-
tions, and for the levels of cellular impairment.

1. Introduction

The sinoatrial node (SAN) is the primary pacemaker of
the heart, what means that the SAN is responsible for ini-
tiating cardiac impulse. There are two crucial properties
that make the SAN special. The automaticity of each of
the SAN cell and stochastic, and rather free, structure of
intercellular connections when compared to the structure
of atrial cell connections. The SAN is located in the upper
part of the right atrium close to the opening of of the su-
perior vena cava, on the right atrium (RA). There are con-
tradictory hypothesis of how the SAN is electrically con-

nected to the atria :
• the SAN is electrically insulated from the surrounding
atria by a structural border of fibrosis, fat layers, and my-
ocyte discontinuity, and the functional and structural con-
nection between the SAN and atria is limited to discrete
SAN exit pathways [1]
• the SAN and atrial cells are extensively connected by
diffuse digitations of the SAN border with the atrial my-
ocardium, and no discrete pathways exists [2].
In simulations we test the effect of limits in paths connect-
ing the SAN cells with the RA cells.

Podziemski and Żebrowski in [3] proposed a simplified,
yet fully physiologically and numerically justified, model
of the atria. It operates on the 2D grid of cells divided into
dedicated regions of the SAN, atroventricular node (AVN)
and regions of normal atrial conductive tissue in between.
The ion-channel cardiac cell activity was driven by the dif-
ferential equations. In particular, popular sets of equations
of Fenton-Karma and FitzHugh-Nagumo were used. How-
ever, there is a modern computational technique, called hy-
brid automata (HA), allowing to preserve all properties of
the dynamical system by separating the evolution into con-
tinuous parts and transitions between them [4]. Intuitively,
short-lived, transient behaviors are represented as discrete
transitions [5].

In [6] we proposed the model of the right atrium which
takes advantages of HA technique. In the following we
consider the time automata (a type of hybrid automata) ap-
proach allowing to model directly the pathways between
the SAN and RA, and allowing to study the impact of
the density of these paths on establishing the normal heart
rhythm. Also, we will present results of simulations test-
ing the influence of tissue fibrosis and impairment of in-
dividual cells. The simulations provided a critical rela-
tionship between atrial anatomy and the rhythm of heart
excitations. It occurred that at probability of 1/8 of SAN-
atrium pathways (randomly chosen), the occurrence of the
normal rhythm attained the highest probability — close to
1, in large intervals for the density of transversal intercellu-
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Figure 1. Membrane AP for typical myocytes of atrium
(green) and ventricle (black). Given values of uncertainty
in the shape of AP follows [7].

lar connections, and for the levels of cellular impairment.

2. Methods

2.1. Timed automata model of an atrial cell

The method of HA relies on mapping the time devel-
opment of a system into automata states and transitions
between them [4]. Sets of differential equations drive the
evolution in the states. In case of cardiac tissue these equa-
tion reproduce the shape of the myocyte AP, see Figure 1.

It is easy to see that in reconstruction of the triangular
shape of the AP of the atrial myocyte, the three states are
enough. The first state describes a cell staying in the rest-
ing potential VR. The second state is the potential upstroke
increase which occurs in response to some external stimu-
lation VS . The third state corresponds to the decay of the
membrane potential to the resting value.

It occurs that independently of the sets of differential
equations assigned to the particular state, the real variables
behave regularly [8, 9]. Namely, the state evolution de-
pends on time in a linear way. One can say that the state
properties, here the potential value, depend proportionally
to the time spent by a cell in the state. Consequently, there
is no reason to solve computationally demanding differ-
ential equations. This observation leads to the notion of
timed automata [10, 11].

Formally, for a finite set of environment events Σ,
a timed automaton is defined as a tuple of [9]: A =
{G, C, init(), inv(), jump(), event()}. The elements of
the tuple A are described as follows:
(i) G = (V,E) is a directed graph with a set of vertices
V , called states, and a set of edges E, called transitions;
(ii) C = {x1, . . . xn} is a set of real-valued variables,
called clocks, which in each time step advance their value
by 1 or reset it to 0;

(iii) set of functions labeling graph vertices: init ⊂ Σ,
inv : V → ClockConstriants, and graph edges: event :
V,E → Σ, jump.Guard : E → ClockConstriants and
jump.Action : E → ClockReset.

Figure 2. Stochastic TA which follows the Luo-Rudy dy-
namics. The extra condition for cellular excitation is in-
troduced to mimic cellular impairment. The excitation in
the presence of strong external enough external stimulation
[NS ≥ NF ] is performed with probability prefuse.

The timed automaton, representing the myocyte dynam-
ics, defined on three states, can be described by one clock
variable t, and by four edges, see Figure 2. The jumps are
driven by the three model constants, ClockConstraints,
namely a, f, rξ which mean a - the length of s0 state, f - the
length of s1 state, and rξ the length of APD. In our propo-
sition rξ is a random variable, assigned to each automaton
individually. The only external event, the stimulation by
NS neighboring cells being in s1 state, governs the transi-
tion between states s0 → s1. Our automaton mimics the
cellular intrinsic cycle with period T = a+f +rξ. In case
a = ∞ the AP cycle is evoked by the external stimulation
NS ≥ NT . The random values of rξ mimic heterogeneity
between atrial cells.

Additionally, to reproduce a possible impairment/fatigue
of a cell, stochasticity into the TA transition s) → s1 was
introduced, see the edge label in Figure 2. The transition
is constrained by the probability prefuse.

2.2. The network used to model the right
atrium.

We assume that TA cells are arranged in nodes of a
square lattice. The size of the lattice L should match the
SAN cell period, namely TSAN = fSAN + rSAN + aSAN,
to guarantee that one wave front is expected to propagate
over the lattice in any time step.
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Figure 3. The right atrium structure used in simula-
tions. The lattice size is L = 120. The SAN consists
of 5 × 15 cells down from (10, 10). The AVN is built
from eight cells up from (100, 120). The AVN is excited
if two of eight AVN cells are simultaneously excited. The
intrinsic dynamics of the atrial cell is driven by time con-
strains f = 1, r0 = 50, a = 1000 and of the SAN cell:
fSAN = 10, r0,SAN = 50, aSAN = 80. These values are
chosen as best fitting to the physiological facts.

Each cell can interact with its neighbors from the Moore
neighborhood: two vertical, two horizontal and four lateral
ones, see Figure 3. We assume that all atrial cells are con-
nected vertically to reproduce the known facts about atrial
architecture. Density of connections in other directions:
horizontal and lateral are the model parameters. In case of
cells in the SAN, there is no direction in favor.

The bordering cells of the SAN are in general isolated
from the atrial cells. Some of them, selected with proba-
bility pSAN exits have a connection directed from the SAN
cell to the neighboring atrial cell.

3. Results and discussion

In a series of plots (A), (B) and (C) we show typical
wave fronts observed in simulations. Each row displays
the same state but at distinct moments of time. Assuming
that each AP propagates unperturbed in the remaining part
of the heart, the time steps between subsequent AVN exci-
tations are considered as intervals of heart beats. Accord-
ingly, we call the state shown in (A) the normal rhythm, in
(B) SAN re-entry, and in (C) other arrhythmia.

(A) nor-
mal state
pnV = 0.55
prefuse = 0
pSAN exits

= 0.12

(B) SAN
re-entry
pnV = 0.55
prefuse =
0.10
pSAN exits

= 0.12

(C) other
arrhyth-
mia
pnV = 0.35
prefuse =
0.20
pSAN exits

= 0.12
The limit states were observed for many densities of not

ventricular connections, pnV = phorizontal = plateral ∈
(0.05, 0.90), for different levels of cellular impairment
prefuse ∈ [0.0, 0.5], and at different ratio pSAN exit of SAN
to atrium connections. The ADP values rξ were uniformly
distributed in the interval [30, 40].

Each parameter setting was simulated a hundred times.
After an initial one thousand steps allowed for the system
stabilization, the state classification was performed accord-
ing to the number of wavefronts reaching the AVN during
next 3000 steps. The ratios of normal rhythms observed
for different parameter settings are shown in Figure 4.

From the plots of Figure 4 one can see that probability
for the stabilization at the normal rhythm depends on both
the density of non vertical connections pnV , and probabil-
ity to refuse of an individual cellprefuse. It is noticeable that
the level of this probability is related to the number of paths
from the SAN to atrium pSAN exit. It occurs that the most
stable system, in a sense the probability to obtain the nor-
mal rhythm, is attained when pSAN exit ∈ (0.25, 0.06). It
occurs that the region with the highest probability to obtain
the normal rhythm switches critically to 0 with decrease of
non vertical connections and increase of prefuse. The line
of the transition can be approximated as follows

prefuse(pnV ) = pnV (1− 0.5pnV )

what indicates that cellular impairment has a weaker ef-
fect on the impulse propagation than the lost of transversal
connections. This critical dependence is present also for
other values of pSAN exit. However, with departure from
pSAN exit = 0.125 there is observed an increase presence
of the SAN re-entry states.

4. Summary

In case of the AP of a myocyte the HA approach leads
to numerically indistinguishable results from solutions ob-
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Figure 4. Ratio of normal rhythms observed in stationary
state when the simulation is run with different density of
non vertical connections and different probability prefuse
to refuse for stimulation, for different ratio of connections
between the SAN and atrium.

tained by the continuous methods. But efficiency of such
simulations is ten times better than in case of the continu-
ous models [9]. Additionally, the HA approach allows to
manipulate with heterogeneity of cellular dynamics.

Our simulations have provided a critical relationship be-
tween atrial anatomy and the rhythm of heart excitations. It
occurred that at probability of about 1/8 of possible SAN-
atrium pathways (randomly chosen), the occurrence of the
normal rhythm attained the highest probability — close to
1. This property is valid in large intervals for the density
of transversal intercellular connections, and for the levels
of cellular impairment. The same critical relationship has
been obtained with the SAN size doubled, namely, when
the SAN consisted with 10x30 cells.
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