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Abstract

The 2018 PhysioNet Challenge utilizes 13 physiological
signals collected during polysomnographic sleep studies
to classify explicitly-defined arousal regions. The goal is
to assign a probability of arousal at each sample for each
test subject. Automatic detection of non-apnea arousals
may help us better understand various causes of sleep dis-
turbance and advance sleep arousal analysis.

Neural networks possess powerful feature-learning abil-
ities to gain insights from complex datasets. Our ap-
proach is based on a deep convolutional neural network
(CNN), which we trained with normalization, pooling, ac-
tivation and dropout techniques in Python using Keras
on top of Tensorflow. The CNN was trained on 737 pa-
tients’ sleep data and validated on 185 patients’ sleep
data. Our model obtained AUROC performance score
of 0.514293+/-0.054509 and AUPRC performance score
of 0.501947+/-0.063199. In this paper, we discuss the
strengths and limitations of our CNN in sleep arousal clas-
sification using a variety of physiological signals. We also
present some possible directions for future work.

1. Introduction

Sleep is considered crucial for preserving daytime cog-
nitive function and physiological well-being. Sleep insuf-
ficiency may be detrimental effects on our overall health
and safety, and result in economic burden at both the indi-
vidual and societal levels [1]. In fact, the Centers for Dis-
ease Control and Prevention (CDC) in the United States
has declared insufficient sleep a “public health problem.”
According to a recent CDC study, more than a third of
American adults are lacking enough sleep on a regular ba-
sis [2]. Furthermore, sleep disorders are commonly asso-
ciated with other major medical problems such as chronic
pain, mental illness and cardiovascular disease [1].

Diagnoses for sleep disorders are traditionally per-
formed in sleep laboratories where various physiological
signals of the sleeping subject are carefully reviewed by
sleep experts. Apnea is one of the more well-studied sleep
disorders, but it is not the only cause of sleep disturbance.
Therefore, the 2018 PhysioNet/ Computing in Cardiology

Challenge (henceforth referred to as “Challenge”) seeks to
detect non-apnea arousals during sleep using a variety of
physiological signals collected during polysomnographic
sleep studies [3]. A limited number of approaches for
detecting sleep arousal using mainly electroencephalogra-
phy (EEG), electrooculography (EOG), electromyography
(EMG) and electrocardiology (EKG) already exists, such
as applying wavelet analysis [4], time-frequency analysis
and the support vector machine (SVM) classifier [5, 6] for
the automatic detection of arousals during sleep.

In this study, we tackle the problem of classifying
non-apnea arousals as proposed by the Challenge by us-
ing well-known deep learning techniques that have been
successfully applied to other classification problems [7].
These techniques have proven to be effective in feature ex-
traction, which is at the core of a useful classification al-
gorithm. The proposed paper describes the dataset used in
section 2. The data pre-processing, model architecture and
training are discussed in sections 3. Finally, the results and
discussions are explained in sections 4 and 5.

2. Materials

Figure 1. Percent of target arousal regions in all patients.

The training dataset for the Challenge consisted of 994
subjects, as described in [3]. 13 physiological signals were
recorded, including EEG, EOG, EMG, EKG, oxygen sat-
uration (SaO2), breathing effort and airflow. Except for
SaO2, all signals were sampled to 200 Hz and were mea-
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sured in microvolts. SaO2 was resampled to 200 Hz, and
is measured as a percentage. In the training dataset, tar-
get arousal regions have been annotated with 1, non-target
arousal regions with 0, and regions that will not be scored
with -1. Figure 1 shows the percent of target arousal re-
gions in a single patient.

On average, only 4.88 percent of samples in all training
subjects are target arousal regions, and the average length
of target arousal regions is 6429 samples long. The distri-
bution of target arousal regions in most training subjects is
reasonable for the training of classifiers. The test dataset
consisted of 989 subjects.

3. Methods

In this section, we describe the data pre-processing and
deep learning approach used in the Challenge.

3.1. Data Pre-processing

We applied all 13 signals in order to account for all po-
tential causes and attain accurate detection. We used zero-
mean and unit-variance to scale each signal. We also trun-
cated the given signals to a fixed window size (5,100,000
samples) for the CNN model.

The architecture of a CNN depends on the complexity
of the problem, the amount of training data available and
the resources needed to train a model. Given the large win-
dow size and the finite training data we have, we decided
to output a probability of target arousal region for every
500 samples (henceforth interval refers to 500 consecutive
samples). Therefore, we re-organized training data so that
a probability is assigned to every 500 samples. To compute
this probability, we discarded samples whose annotations
are -1 and took the average of samples whose annotations
are 0 or 1.

3.2. Problem Formulation

The target arousal region classification task is a
sequence-to-sequence task that takes as input 13 physio-

logical signals X =


x1,1 x1,2 x1,3 . . . x1,n
x2,1 x2,2 x2,3 . . . x2,n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
x13,1 x13,2 x13,3 . . . x13,n


and outputs a scalar p between 0 and 1 such that p indicates
the probability that interval of 500 samples contains target
arousal region.

For a single patient in the training dataset, we optimize
the loss function below, which was defined as the cross-

entropy with L2 regularization:

L(ω) =
1

n

13∑
i=1

n∑
j=1

H(xij , x̂ij) + L2

=
1

n

13∑
i=1

n∑
j=1

xij log x̂ij + (1− xij) log (1− x̂ij)

+ λ||ω||22

where xij is the true possibility of the ijth window, x̂ij
is the estimated probability of the ijth window, ω is the
scalar probability to be assigned, and λ is the weight decay
parameter.

3.3. Model Architecture

A CNN is a supervised classification model in which
low-level input is transformed through a network of filters
and pooling layers. The feature produced by the model
reflects properties of the data and the associated labels.
Therefore, the predictive power of the model increases as
more data is observed [8]. CNNs have achieved great suc-
cess in areas such as computer vision and signal process-
ing. We attempted to build a model that takes advantage of
the strengths of CNN for the Challenge task.

The architecture used was chosen on the basis of other
published models, as described in He 2015 [7]. The CNN
takes as input 13 pre-processed physiological signals, and
outputs a sequence of probabilities. The network contains
33 layers of convolutions and a fully connected layer and
a softmax layer at the end. The high-level architecture of
the network is shown in Figure 2.

The input is first sent to three 1D convolutional layers.
Between each convolutional layer, we added max pooling
layer that extracts the maximum value of the filters and
provides the most informative feature. This helps to avoid
redundency and reduce computational cost. The processed
input is then sent to 16 residual blocks with two convolu-
tional layers per block. All the convolutional layers have
64 filters, and each filter has a length of 16. The last layers
are a fully-connected layer followed by softmax activation
procedure, which produces a probability for each interval.

As our model has more parameters than a simple model,
it is more prone to over-fit. Overfitting was reduced by us-
ing a number of regularization techniques, including batch
normalization, dropout and early stopping.

3.4. Training

We split the training dataset provided by the Challenge
into training and validation set. We used 737 subjects sleep
data (80% of the data) for training and 185 subjects’ sleep
data for validation.
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Figure 2. Architecture of our CNN model.

Figure 3. AUROC Score Distribution.

During training, we used the Adam optimizer [9] with
the default parameters and the mean squared error loss
optimization [10]. We trained our model in Python us-
ing Keras on top of Tensorflow. A self-designed genera-
tor function is used to process multiple training subjects in
parallel.

4. Results

We trained our networks from scratch and saved the best
model as evaluated on the validation set. The results of
cross validation on the training data provided by the Chal-

Figure 4. AUPRC Score Distribution.

lenge obtained a testing accuracy of 0.7014 and validation
accuracy of 0.7482 in Keras.

The final results are evaluated based on two evaluation
metrics - AUROC (Area Under the curve of the Receiver
Operating Characteristic) and AUPRC (Area Under the
Precision Recall Curve). In other words, AUROC is the
area under the curve where x is the false positive rate and
y is the true positive rate; and AUPRC is the area under the
curve where x is the recall and y is the precision.

Our best model obtained AUROC performance score of
0.514293+/-0.054509 and AUPRC performance score of
0.501947+/-0.063199 using Phase I measurements, which
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computes AUROC and AUPRC for each subject individ-
ually and then averages over the entire dataset. Perfor-
mance distributions for individual training data subjects
are shown in Figure 3 and 4. In the final phase, when
running on the entire hidden dataset, our model achieved
AUROC score of 0.486 and AUPRC score of 0.072.

5. Discussions

Our proposed model utilizes a 33-layer CNN for the tar-
get arousal classification task. Results obtained with the
model show that it is weak in assigning a probability of
target arousal to a given sample because both the AUROC
and AUPRC scores were slightly above 0.5 at best.

A major reason for this poor performance is in data-
preprocessing and CNN model design. We believe that the
results could have improved if we put more considerations
into transforming and scaling the different raw physiologi-
cal data, as well as experimenting with more CNN models.

Another factor that we think contributed to the weak
performance is highly imbalanced dataset. To deal with
this, theoretically, we could add surrogate data that con-
tains more target arousal regions. However, it is not very
practical given the importance of continuity in analyzing
individuals’ sleep data [11].

Finally, we would like to discuss briefly whether or not
deep learning might be suitable to process datasets such
as the one provided by the Challenge, especially consider-
ing growing ethical concerns [12]. There has already been
evidence that algorithms introduced in non-medical fields
make problematic decisions that reflect biases inherent in
the data used to train them. Such ethical issues regard-
ing machine learning algorithms have already caused the
financial sector to be exceedingly cautious about adopting
AI technologies [13]. It is possible that we could build al-
gorithms to compensate for known biases and properly de-
ploy machine learning algorithms such that their full po-
tential could be utilized. We think such considerations
should be taken by every designer who create machine
learning system for clinical use.
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