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Abstract

A pilot study on deriving respiratory rate from electro-

cardiogram (ECG) signals recorded by a self-developed

wearable armband is presented. The armband includes

a pair of dry electrodes which record ECG and it is

designed for long-term monitoring. Armband-ECG and

plethysmography-respiration signals were simultaneously

recorded from 5 subjects (3 male) while paced breathing at

constant rates from 0.1 to 0.4 Hz (with an increment of 0.1

Hz). Respiratory rate was estimated from the armband-

ECG by using a method based on the variations in QRS

slopes and R-wave angle. The estimations were compared

to those obtained from the respiration signal. Obtained

median and interquartile ranges of the relative error were

lower than 4% for every requested respiratory rate. This

suggests that normal ranges of spontaneous respiratory

rate could be estimated from the wearable armband, al-

lowing us to consider it for long-term wearable cardio

and/or respiratory monitoring.

1. Introduction

Long-term daily monitoring respiration is desirable in a

wide range of applications especially when combined with

ECG monitoring. These applications include sleep studies

[1], prediction of epileptic seizures [2], stress assessment

[3], and monitoring of chronic respiratory patients [4].

The common techniques for respiratory monitoring usu-

ally require cumbersome devices which are not convenient

for daily monitoring, such as chest bands or nasal can-

nula. However, some alternatives have been presented in

the literature based on obtaining respiratory information

indirectly from other biomedical signals. Some of them

are based on electrocardiogram (ECG), leading to the so-

called ECG-derived-respiration (EDR) methods. These

methods exploit different respiration-related modulations

in beat occurrence and/or in ECG morphology. Beat-

occurrence-based methods are known to have problems

with non-related low-frequency (below 0.15 Hz) modula-

tions which also can be observed in heart rate, while ECG

morphology methods are not affected by this phenomenon.

However, the conventional setup which is usually used

in the reported EDR studies is based on adhesive wet elec-

trodes over the chest, and this is not convenient for long-

term daily monitoring. The use of adhesive wet electrodes

cause skin irritation after few (2-3) days limiting their ap-

plication periods. Furthermore, placing the electrodes over

the chest leads to discomfort. In this study, a setup based

on a pair of dry electrodes placed over the arm was used.

These electrodes were developed in our lab at University

of Connecticut [5], as well as an armband incorporating

them which can record ECG signals standalone.

This armband device is more convenient for long-term

daily monitoring, but it is more challenging than the con-

ventional setup based on wet electrodes over the chest.

Typically, the use of dry electrodes leads to a lower signal-

to-noise ratio than the use of wet electrodes. Moreover,

one of the main sources of respiratory modulation in the

ECG morphology relies on the movement of the electrodes

with respect to the heart, and this movement is reduced

when the electrodes are placed over the arm. However,

the effect of the impedance changes in the thorax due to

the airflow exchange is present, thus, obtaining respiratory

information from ECG morphology can be possible using

the armband. These differences can affect the morphology

of the ECG, and thus the accuracy of EDR methods.

This paper presents a pilot study on how the EDR

method presented in [6] performs with ECG signals

recorded by the wearable armband. The method presented

in [6] is based on QRS-morphology variations, in partic-

ular, on QRS slopes and R-wave angles. This choice was
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based on that it can be applied with single-lead ECG sig-

nals, and on that it is the best suited for stress test (which

remains a highly noisy and non-stationary environment) to

the best of our knowledge.

2. Methods

2.1. Data and signal preprocessing

ECG and respiration signals were simultaneously

recorded from 5 subjects (3 male) during a paced breathing

experiment. Subjects were requested to breath at specific

fixed rates by using a visual guidance. Requested rates

were 0.1, 0.2, 0.3, and 0.4 Hz, covering the range of normal

spontaneous breathing rate. Each rate was requested for 2

minutes. Respiration was recorded by using Respibands

(Ambulatory Monitoring, Inc., Ardsley NY, USA) which

are based on plethysmography. Its digitalization was per-

formed by using a 16-bit A/D converter (PowerLab/4SP,

ADInstruments, Inc., Dunedin, New Zealand) at a sam-

pling rate of 100 Hz. ECG was recorded by using the

wearable armband developed in our lab at University of

Connecticut, at a sampling rate of 1000 Hz. The armband

is worn on the left arm as shows Figure 1a.

The ECG preprocessing was similar to that used in [6].

First, a low-pass filter with a cutoff frequency of 35 Hz

was applied. Then, QRS complexes were detected and de-

lineated by the wavelet-based technique described in [7],

which offers nQi
, nRi

, and nSi
denoting Q, R, and S wave

peaks in this paper. In case no Q wave peak was detected

for the i-th, QRS onset was used as nQi
. Similarly, QRS

offset was used as nSi
if no S wave peak is detected for the

i-th beat. Sinus beats were determined by the method pre-

sented in [8], and baseline wander was removed by cubic

spline interpolation.

2.2. ECG derived respiration signals

Three features were computed from each QRS complex:

upwards to the R-wave slope (IUSi
), downwards from the

R-wave slope (IDSi
), and R-wave angle (φi).

In order to measure IUSi
, the location of the maximum

absolute value of the first derivative of the ECG signal be-

tween nQi
and nRi

was detected. Then, a straight line was

fitted to the ECG signal within a window of 8 ms centered

at the location of this maximum. The value of IUSi
was set

as the slope of this straight line. IDSi
was measured using a

similar procedure, this time using the ECG signal between

nRi
and nSi

. Subsequently, φi was measured as the small-

est angle formed by the lines fitted for measuring IUSi
and

IDSi
. Figure 1b illustrates a descriptive example of how

IUSi
, IDSi

, and φi are obtained.

These three parameter series are measured beat-to-beat,

so they are not evenly sampled. For each one of them,
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Figure 1: Armband location (a), and relevant points in the

QRS slopes and R-wave angle measurement algorithm (b).

a median-absolute-deviation-based outlier-rejection rule

was applied, and a 4-Hz evenly sampled version was ob-

tained by cubic spline interpolation. The resultant parame-

ter series from IUSi
, IDSi

, and φi are denoted dUS(n), dDS(n),
and dR(n), respectively, and they are used as EDR signals

in this work. An example of these EDR signals is shown

in Figure 2. Further details are given in [6].

2.3. Respiratory rate measurement

Respiratory rate was estimated by using the algorithm

presented in [6]. It allows to estimate respiratory rate from

only one EDR signal, or from combination of several EDR

signals to yield a more robust estimation. The algorithm

can be divided into 2 stages: the power spectrum density

(PSD) estimation, and the “peak-conditioned” average.

The PSD estimation was performed from segments of

42 s, by using the Welch periodogram with subsegments

of 12 s and an overlap of 50%. The PSD estimated from

the jth EDR signal and the kth segment of 42 s is denoted

Sj,k(f) in this paper. A Sj,k(f) is estimated each 5 s.

The “peak-conditioned” average consists of a moving

average of only those Sj,k(f) which have a “peaky” shape.

At each k instant, up to 5 spectra per used EDR signal can

be averaged. In order to determine whether Sj,k(f) has a

peaky shape or not, a respiration peak was chosen based

on both amplitude and proximity to a respiratory rate ref-

erence fR(k−1) obtained from previous (k−1) segments.

Then, the peakness of Sj,k(f) is computed as the percent-

age of power around the respiratory peak with respect to

the total power in a wider band around fR(k − 1) where

respiration is expected to be.

Subsequently, the “peak-conditioned” average S̄k(f) is
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Figure 2: Example of recorded signals from a subject

breathing at 0.3 Hz, and the corresponding obtained series:

ECG signal recorded by the wearable armband (a); Up-

wards to the R wave slope series (b); Downwards from the

R wave slope series (c); R-wave angle series (d); and res-

piration recorded by Respibands (e). Red asterisks show

the bet-to-beat measures of IUSi
, IDSi

, and φi.

obtained by averaging only those Sj,k(f) whose peakness

fulfil 2 threshold-based criteria. The first is a fixed thresh-

old (only peaked spectra take part in the average), and the

second is a time-varying threshold which depends on the

maximum peakness reached by all spectra of each time in-

stant (only the most peaked spectra at each time instant

take part in the average). The respiratory rate f̂(k) is es-

timated as the location of a peak in S̄k(f) whose choice is

based on its amplitude and its proximity to fR(k − 1). No

respiratory rate estimation is performed in those instants

when no spectrum fulfils the peakness criteria. Further de-

tails are given in [6].

Respiratory rate was estimated from each one of the 3
EDR signals and from the combination of all the 3. Fur-

thermore, respiratory rate was estimated by using the same

algorithm from r(n) and used as ground truth for evaluat-

ing the performance of the EDR methods.

2.4. Performance measurements

In order to evaluate the performance of the proposed

method, the relative error of the obtained estimates with

respect to those obtained from r(n) was computed. Sub-

sequently, the median and the interquartile range (IQR) of

this relative error was computed for each examined respi-

ratory rate. In addition, the percentage of estimates that

obtained a relative error lower or equal to 3% (Re≤3) was

also computed.

3. Results

Respiratory rate was estimated 100% of the time in ev-

ery case. Table 1 shows median, IQR, and ReR≤3 of the

relative error of the estimated respiratory rate, using the

respiratory rate estimated from r(n) as the gold standard.

Table 1: Obtained median (Med), IQR, and ReR≤3 of rela-

tive error for each requested respiratory rate. Comb refers

to the combination of the 3 studied EDR parameters.

Rate 0.1 Hz 0.2 Hz 0.3 Hz 0.4 Hz

IUS

Med (%) 0.90 -0.11 -0.21 0.02

IQR (%) 3.62 0.69 0.82 3.42

Re≤3 (%) 59.68 100 93.75 67.69

IDS

Med (%) 0.47 -0.24 -0.10 -0.09

IQR (%) 3.56 0.54 0.34 1.60

Re≤3 (%) 67.64 100 100 78.46

φ

Med (%) 0.67 -0.28 0.18 -0.11

IQR (%) 3.32 0.54 1.10 1.51

Re≤3 (%) 69.35 100 100 81.54

C
o
m

b Med (%) 0.85 -0.19 -0.07 -0.18

IQR (%) 2.31 0.69 0.35 1.80

Re≤3 (%) 75.81 100 100 81.54

4. Discussion

A pilot study on respiratory information obtained from

ECG signals recorded by a wearable armband for long-

term monitoring has been presented. The algorithmic

method was previously published and evaluated with 12-

standard-leads ECG in [6]. However, to the best of our

knowledge, this is the first time that it is used with ECG

recordings from a wearable device.

The wearable device is an armband developed in our lab

at University of Connecticut and it includes a pair of dry

electrodes which can record ECG signals from the arm.

The dry electrodes and the locations of the electrodes in

the arm is neither the optimal option for obtaining the best

ECG signals nor for exploiting the influence of respiration

over the ECG. However, it is more viable option than the

conventional setup based on wet electrodes over the chest.

The use of dry electrodes allows the long-term monitoring

because they do not cause skin irritation while the conven-

tional wet electrodes do, and placing the electrodes over

the arm is more convenient and practical. Nevertheless,

this represents a more challenging scenario than using wet
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electrodes over the chest because the signal-to-noise ratio

is lower with dry electrodes. Moreover, the respiration-

synchronous movement of the electrodes with respect to

the heart is reduced when electrodes are placed over the

arm. In this way, the respiration-related modulation in

the ECG morphology may rely mainly on the impedance

changes in the chest due to the airflow exchange.

Three QRS-morphology-based EDR parameters were

analyzed: IUS, IDS, and φ. In addition, the information of

these 3 EDR parameters was combined in order to examine

if a more robust estimation can be obtained.

Obtained medians and IQRs of relative error (lower is

better) were lower than 4% in every case. The 3 EDR sig-

nals reached a Re≤3 (higher is better) of 100% when the

examined respiratory rate was 0.2 Hz. Moreover, IDS and

φ reached a Re≤3 of 100% also for a respiratory rate of 0.3

Hz. However, φ obtained a higher or equal Re≤3 than the

other studied EDR signals for every examined respiratory

rate. These results suggest that φ is the best choice among

the 3 studied EDR signals if only one EDR signal is used.

The respiratory rate estimated from the combination of

the 3 studied EDR signals obtained the same Re≤3 for 0.2,

0.3, and 0.4 Hz than φ (100%, 100%, and 81.54%, respec-

tively) and a higher Re≤3 for 0.1 Hz (75.81%), suggest-

ing that combining information from different EDR signals

leads to more accurate results in some cases. It is worthy to

note that in [6] the combination included information from

different leads, and that the improvement obtained when

combining EDR signals was more visible in time offer-

ing respiratory rate estimates than in estimation accuracy.

In this work, every EDR signal and their combination of-

fered respiratory rate estimates the 100% of the time. This

may be attributed to the fact that the analyzed data were

recorded from subjects while sitting quiet. A decrease in

measuring time is expected while subjects are moving, and

combination may offer a higher measuring time in those

situations.

5. Conclusions

Respiratory rate can be obtained from ECG signals

recorded by a wearable armband device, using a pair of

dry electrodes over the arm. This remains a much more

convenient setup for wearable devices than conventional

wet electrodes over the chest, but also a more challenging

scenario. However, medians and IQRs of relative error for

normal ranges of spontaneous respiratory rate (0.1-0.4 Hz)

were lower than 5%. These results allow us to consider a

wearable cardiorespiratory monitor based on an armband

that records ECG, which could have a wide range of appli-

cations including sleep studies and chronic cardio and/or

respiratory diseases daily monitoring. However, this is a

pilot study which includes only 5 subjects. Further studies

must be conducted in order to assess the performance of

the methods with a higher number of subjects, and in dif-

ferent environments including while subjects are moving.
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