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Abstract 

Advances in nonlinear dynamics and information 
theory facilitate a multivariate study of information 
transfer between physiological systems and sub-systems 
aiming to characterize healthy and diseased physiological 
network states. In this study, we investigated the central-
cardiorespiratory network (CCRN) applying linear and 
nonlinear causal coupling approaches (normalized short 
time partial directed coherence, multivariate transfer 
entropy) in 21 healthy subjects. From all participants, 
continuous heart rate (successive beat-to-beat intervals, 
BBI), synchronized calibrated respiratory inductive 
plethysmography signal (respiratory frequency, RESP), 
and the mean power PEEG from a 64-channel EEG were 
recorded for 15 minutes under resting conditions. We 
found that the central-cardiorespiratory coupling is a 
bidirectional one, with central driving mechanisms 
towards BBI (PEEG→BBI), and respiratory driving 
towards PEEG (RESP→PEEG). The central-cardiac 
(PEEG˗BBI) and central-respiratory coupling (PEEG˗RESP) 
seem to be stronger generated by linear process than 
nonlinear ones. We obtained a different CCRN behavior in 
healthy subjects providing a further step towards a more 
comprehensive understanding of the interplay of neuronal 
and autonomic regulatory processes. 

 
 

1. Introduction 

The new interdisciplinary field of Network Physiology 
is getting more and more into the focus of interest in 
medicine. Network Physiology aims to develop theoretical 
framework and a system-wide network approach to 
understand how horizontal integration of physiological 
systems, each with its own complex structure and 
mechanisms of regulation, leads to global behaviour and 
distinct physiologic functions at the organism level [1]. It 

aims to define healthy and diseased states by analysing 
structural, dynamical and regulatory alterations in the 
interaction of physiological systems and sub-systems [2]. 

The central control of autonomic nervous system (ANS) 
and the complex interplay of its components can be 
described by a functional integrated mode - the central-
autonomic-network (CAN) - and can be assumed as a 
feedback-feedforward network, reacting with flexible and 
adaptive responses to internal and external factors. CAN 
represents the integrated function and interaction between, 
the central nervous system (CNS) and ANS (especially the 
parasympathetic and sympathetic activity). The dynamic 
interplay between the brain and the heart ensure 
fundamental homeostasis and mediate a number of 
physiological functions as well as disease-related 
alterations [3]. It has been assumed that various autonomic 
function processes are generated by a network of 
interaction showing specificity for task and autonomic 
division. For healthy ones, Beissner et al. [4] suggested that 
asymmetric frontal EEG responses to emotional arousal in 
the form of positive and negative emotions may elicit 
different patterns of cardiovascular reactivity. 

Recent advances in nonlinear dynamics and information 
theory facilitate a multivariate study of information 
transfer between time series. For the analyses of the 
cardiovascular-, cardiorespiratory- and central regulatory 
networks as well as the quantification of their interactions, 
a variety of methods have been proposed. For the 
characterization of linear and nonlinear couplings in the 
brain-heart (CNS-ANS) network several concepts are 
available [1, 5-7] based on Granger causality; nonlinear 
prediction; entropies; symbolization and phase 
synchronization [2]. 

The multivariate coupling analysis of heart rate (HR), 
respiration (RESP) and the power derived from the 
electroencephalogram (PEEG) time series, respectively, 
might provide additional information about the complex 
central-autonomic-network in neuropathological diseases 
than uni- and bivariate approaches can do.  
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The aim of this study was to investigate the central-

cardiorespiratory network (CCRN) by determining the 
strength and direction of the interaction between central- 
and autonomic network activity in healthy subjects under 
resting conditions.  

 
2. Materials and Methods  

2.1. Subjects 

In this study, 21 healthy subjects (CON; 6 females, 
mean age 36.7±13.4 years) were enrolled. Interviews and 
clinical investigations were performed for CON to exclude 
any potential psychiatric or other diseases, as well as to 
double-check for any interfering medication. The 
structured clinical interview and a personality inventory 
(Freiburger Persönlichkeitsinventar) were also applied to 
the subjects to detect personality traits and any disorders 
which might influence autonomic function. All 
participants provided their written informed consent to a 
protocol approved by the local ethics committee of the Jena 
University Hospital. This study complies with the 
Declaration of Helsinki. 

 
2.2. Data Recordings and Pre-processing 

From all subjects, a 3-channel short-term ECG (500Hz), 
synchronized calibrated respiratory inductive 
plethysmography signal (50Hz) (LifeShirt®, Vivometrics, 
Inc., Ventura, CA, USA) and a 64-channel EEG (500Hz) 
were recorded synchronously for 15 minutes. The EEG 
(Brain Products, Germany) was acquired using 64 active 
Ag/AgCl electrodes, and transmitted via the BrainAmp 
Amplifier (AFZ: ground, FCZ: reference). The electrodes 
were positioned according to the extended 10-20-system 
using an electrode cap. The impedance levels (<25 KΩ) for 
all electrodes were checked following the attachment of the 
electrode cap to each participant’s scalp. All subjects' 
recordings were started after a supine resting period of 10 
minutes. Subjects were asked to close their eyes, relax and 
breathe normally to avoid hyperventilation.  

The following time series with respect to autonomous 
regulation were automatically extracted from the raw data 
records: 
− Heart rate (lead I) consisting of successive beat-to-beat 

intervals (BBI, [ms]), 
− Respiratory frequency (RESP, [s]) as the time intervals 

between consecutive breathing cycles, 
− Mean power PEEG from the EEG (during each RR-

interval, [µV2]). 
EEG recordings (without any stimulation) were band-

pass filtered (0.05Hz-60Hz, Butterworth filter, order=3) in 
order to remove slow drifts resulting from slow body 
movements or sweating, and to prevent higher frequency 

content from additional noise. For EEG analyses, artefact-
free time series were used. All extracted time series 
(autonomous, central) were filtered by applying an 
adaptive variance estimation algorithm to remove and 
interpolate seldom occurring ventricular premature beats 
and artefacts (e.g., movement, electrode noise, and 
extraordinary peaks) to obtain normal-to-normal beat time 
series (NN). To obtain synchronized time series, BBI, 
RESP, and PEEG were resampled using a linear 
interpolation method (2Hz). 

 
2.3. Normalized Short-time Partial 
Directed Coherence 

To quantify the central-cardiorespiratory network the 
NSTPDC approach was applied [8]. It is based on a 
multivariate autoregressive model with model order p to 
determine linear Granger causality (GC) in the frequency 
domain based on the time-variant partial directed 
coherence approach (tvPDC). For the selection of the 
optimal order p of the AR(p) model the stepwise least 
squares algorithm and the Schwarz’s Bayesian Criterion 
(SBC) were used.  

The normalization factor NF determines the strength 
and the direction of all causal links between a set of 
multivariate time series as a function of frequency f. The 
NF can take the following values: NF = {−2, −1, 0, 1, 2}. 
Strong unidirectional coupling is indicated if NF is equal 
−2 or 2, bidirectional coupling with the determination of 
the driver-responder relationship exists if NF is equal−1 or 
1, and an equal influence in both directions and/or no 
coupling if NF=0. In the case that both area indices reveal 
equal values that are larger than zero an equal influence in 
both directions is present, if both area indices reveal equal 
values but are zero no coupling is present. Here, NSTPDC 
indices were calculated by applying a window (the 
Hamming window) of lengths l, with l=120 samples and a 
shift of 30 samples (90 samples overlap between each 
window).  

In addition to NF, the areas (ABBI→PEEG, APEEG→BBI, 
[a.u.]) were determined to identify the coupling strength. 
ABBI→PEEG and APEEG→BBI can have any values in the range 
of [0,1]. APEEG→BBI=1 indicates that all causal influences 
originating from central part are directed toward BBI, 
APEEG→BBI=0 indicates that the central part does not 
influence BBI.  

 
2.4. Multivariate Transfer Entropy 

Schreiber [9] proposed an information theoretic 
approach called transfer entropy (TE) to distinguish 
between driving and responding elements, to detect 
asymmetries in the interaction, and to quantify the extent 
to which the dynamics of one process influences the 
conditioned transition probabilities of another. TE 
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measures GC with the prediction improvement approach 
and extends the concept of Shannon entropy by taking into 
account the probabilities of transitions rather than static 
probabilities. TE is able to determine the direction of 
coupling and information flow between coupled processes, 
and it is “model-free” approach [7]. Vakorin et al. [10] 
introduced the partial transfer entropy, a multivariate 
version of TE which quantifies causality between two 
nodes of an interacting network.  

The Multivariate Transfer Entropy (MuTE) quantifies 
causality from one time series to another as the amount of 
information flowing directly from the first to the second 
time series, while accounting for the effects of all other 
time series in the multivariate representation. Here, MuTE 
was applied using the nearest neighbour estimator and non-
uniform embedding (NN NUE) to quantify the nonlinear 
interactions [11]. 

 
3. Results 

We found that the central-cardiorespiratory coupling is 
a bidirectional one, with central driving mechanisms 
(PEEG→BBI) towards BBI, and respiratory driving 
(RESP→PEEG) towards PEEG.  

The linear influence (NSTPDC method) from PEEG to 
BBI was much stronger than BBI to PEEG, whereas the 
linear influence from RESP to PEEG was much stronger 
than PEEG to RESP (figure 1, table 1).  

The nonlinear influences (MuTE method) from BBI and 
RESP to PEEG as well as from PEEG to BBI and RESP were 
nearly equally strong pronounced (table 1). 

For the coupling between BBI and PEEG it was shown 
that mean NF was −0.67 pointing to a bidirectional 
coupling from PEEG→BBI, with the driver being PEEG, and 
BBI the target variable. For the coupling between the 
respiration (RESP) and PEEG we revealed a mean NF of 
0.82, indicating bidirectional coupling from RESP→PEEG. 

 
Table 1. Results of CCRN analysis applying NSTPDC and 
MuTE for healthy subjects (CON). 

 
 

Figure 1. Averaged NSTPDC plots for central-
cardiorespiratory coupling analyses for healthy subjects. 
Arrows indicating the causal coupling direction from one 
time series to another, e.g., RESP←PEEG, indicating the 
causal link from PEEG to RESP. Coupling strength ranges 
from blue (no coupling) to red (maximum coupling), where 
RESP represents respiratory frequency, and PEEG 
represents the mean power in BBI-related EEG intervals. 
 
4. Discussion 

We found a different CCRN structure in healthy 
subjects expressed by a strong central influence on the 
cardiac system, and a strong respiratory influence on the 
central nervous system, respectively. The central-cardiac 
(PEEG˗BBI) and central-respiratory coupling (PEEG˗RESP) 
seem to be more clearly indicated by the linear method than 
the nonlinear one. Particularly the central nerve system 
stronger controls the cardiac and less the respiratory 
system. This suggests that the central-cardiorespiratory 
process (closed-loop) is mainly focusing on adapting the 
heart rate rather via the autonomic nerve system than via 
the central influence on the respiratory system. On the 
other side, the feedback-loop from ANS to CNS is strongly 
dominated by the respiratory activity. This behavior may 
be interpreted as a stronger information flow from RESP 
to central regulatory processes acting as a feedback-loop to 
central activity for more inputs (information flow) toward 
ANS. The final respiratory output involves a complex 
interaction between the brainstem and higher centers, 
including the limbic system and cortical structures. 
Respiration is primarily regulated for metabolic and 
homeostatic purposes in the brainstem and changes in 
response to emotions, such as sadness, happiness, anxiety 
or fear [12]. Since the human organism is an integrated 
network of interconnected and interacting organ systems, 
each system represents a separate regulatory network. The 
behavior of one single physiological system (network) may 
affect the dynamics of all other systems in the entire 
physiologic network. Due to these interactions, failure of 
one system can trigger a cascade of failures throughout the 
entire network [13]. Bartsch et al. [14] could demonstrated 
that the cardiac and respiratory systems exhibit three 
distinct independent forms of cardio-respiratory coupling 

mean ± sd
BBI→PEEG 0.016 ± 0.011
PEEG→BBI 0.017 ± 0.011
RESP→PEEG 0.017 ± 0.010
PEEG→RESP 0.016 ± 0.009
BBI→PEEG 0.10 ± 0.05
PEEG→BBI 0.19 ± 0.10
RESP→PEEG 0.17 ± 0.07
PEEG→RESP 0.07 ± 0.06

coupling strength 
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(RSA, cardio-respiratory phase synchronization (CRPS) 
and time-delay stability (TDS)) responding differently to 
key physiologic parameters, and act on different time 
scales on neuro-autonomic control. The output of the CAN 
is directly linked to heart rate variability (HRV). In 
addition, sensory information from different organs and 
subsystems such as the heart, the immune system and 
vascular system are feedbacks to the CAN. As such, HRV 
is an indicator of central-peripheral neural feedback and 
CNS-ANS integration [15].  

In conclusion, this study provides a further step towards 
a more comprehensive understanding of the interplay of 
neuronal and autonomic regulatory processes in healthy 
subjects. This might be the basis for an early identification 
of central and/or autonomic impairments. 
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