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Abstract 

The search for focal ectopic activity in the atria 
triggered from non-standard regions can be time 
consuming. The use of body surface potential maps to 
plan the intervention can be helpful, but require an 
advance processing of the data, that usually involves to 
solve an ill-posed inverse problem. In addition, changes 
in maps due to pathological substrate such as fibrosis 
might affect the expected electrical patterns. In this work, 
we use a machine learning approach to relate ectopic 
focus activity in different atrial regions with body surface 
potential maps, and consider the effects of fibrosis in 
various densities and distributions. Results show that as 
fibrosis increases over 15% the systems has to increase 
the region size in which an ectopic focus should be 
searched, but keeps the performance over 90% when at 
least 64 electrodes are used. 
 

 
1. Introduction 

Focal atrial tachycardia (FAT) can be treated by radio 
frequency ablation with an acceptable long-term success 
rate. However, the localization of ectopic foci in the atria 
requires that an electrophysiologist maps the electrical 
activity on the endocardium to infer, based on his 
experience, the area where tissue should be ablated to 
eliminate the arrhythmia [1]. When electrical triggers are 
located in non-standard regions, or only generate a few 
ectopic activations, it can be complex and time 
consuming its localization [2]. In addition, the existence 
of fibrotic tissue makes the tissue prone to ectopic focus 
in non-standard locations, and complicates the already 
intricate patterns of activation.  

The development of non-invasive techniques based on 
surface ECG data that can assist electrophysiologist 
intraoperatively to track the electrical triggers could 
improve radio-frequency ablation success rates. Atrial 
arrhythmic events induced artificially from an 
intracardiac catheter have been successfully related to 
indices derived from body surface potential maps 
(BSPM) [3]. Decision trees have also been proposed to 
help identify the source of FAT from BSPM data [4], 
although within a limited number of regions. In most of 
previous studies, the presence of fibrosis has been 

neglected, however, it is important to develop techniques 
for identification of FAT triggers that take into account 
the cardiac substrate. Ignoring the effects of fibrosis is a 
clear limitation of any method based on body surface 
potential maps, since current-resistance fibrotic barriers 
affect the activation patterns. 

This study aims to show a methodology to estimate 
the location of ectopic foci by means of a machine 
learning system trained with multi-electrode ECG data 
generated by means of a detailed biophysical model of the 
atria and torso. The use of biophysical simulations allows 
the definition of hundreds of scenarios that are posteriorly 
run in a high-performance computer and do not require 
any further computation in the clinical environment [5]. 
The scenarios used to train the machine learning models 
include fibrosis in different proportions and distributions. 
A secondary goal is to assess how fibrosis affects the 
body surface potential maps and the detection of the 
ectopic sources. 

 
2. Material and Methods 

2.1 Biophysical Modelling 

The biophysical simulations were carried out in a 3D 
model of the atria and torso previously developed [6, 7], 
that considered the specific fibre orientation in 21 
different anatomical regions, and tissue and cellular 
heterogeneity in 10 regions. The ionic cellular model used 
was Courtemanche for the healthy tissue and MacCannell 
for fibrotic tissue. A total of 475 simulations of 200ms in 
25 configurations of the atria (i.e., different distributions 
of fibrosis) were carried out (Figure 1, left panel). 
Simulations were performed solving the monodomain 
equation in the atrial domain (ELVIRA Solver), which 
were propagated to the torso surface solving an 
approximation of the bidomain equation. The model 
included five different distributions of fibrosis in 5 
different densities, following the definition of four level 
of LA remodelling stage (quartile) of fibrosis associated 
to the ratio of fibrosis to atrial volume (Utah stage I: < 
8:1% (Q1); Utah Stage II: < 16% (Q2); Utah Stage III: < 
21% (Q3); Utah Stage IV: > 21% (Q4)) [8]. That gave 
rise to 25 models, for which we simulate 18 ectopic focus 
plus sinus rhythm activation. As a result, we obtained 
body surface potential maps (BSPM) for each of the 475 
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simulations performed (Figure 1, right panel).  
All the models were stabilized in 3D using a train of 

20 pulses from the sino-atrial node at a BCL of 500ms. 
Following FAT was stimulated with the same BCL from 
the different ectopic foci for each scenario. 

2.2 Machine Learning Pipeline 

 The input for the machine learning pipeline consisted 
in the set of simulated body surface potential integral 
maps (BSPiM). Each BSPiM is obtained by calculating 
the integral of the P-wave signal at each of the 256 
recording leads on the torso (see Figure 4, top row) [9]. 
First, BSPiM are clustered using a k-means algorithm, for 
k = [2, 10] clusters/groups. The clustering is unsupervised 
and allows to check whether simulations close in the 
BSPiM space map to ectopic foci close in the atrial 
anatomy. Following, a support vector machine is trained 
with the BSPiM and the labels obtained from the 
clustering. Finally, a cross-validation is performed to 
analyse the accuracy of the method to predict the label 
associated to a BSPiM, which is related to the location of 
the corresponding ectopic focus on the atria (Figure 1, 
right panel). The whole procedure was completed for 
input BSPiMs with varying number of electrodes. 

3. Results 

Focal activity was triggered from 19 different atrial 
locations, and BSPiMs were collected using a number of 
electrodes that ranged from 2 to 256 (see Figure 4, top 
row). The density of fibrosis produced changes in the 
patterns of activation for a given ectopic focus that were 
very notorious for stage IV (> 21% fibrosis). As can be 
seen in Figure 1, central column, the direction of the 
wavefront in the left atria free wall changes for the last 
two cases which are in IV stage. This was due to 
conduction blocks and delays in areas with dense patchy 
fibrosis. In some cases, the activation map and BSPiM 
showed completely different patterns compared to normal 
activation or activation with fibrosis with a ratio under 
15%. 

From all BSPiM data, the ectopic foci were grouped in 
into atrial regions that vary between K=2 and K=10 
regions. Figure 2 shows how the different BSPiM clusters 
map to the atria ectopic location when fibrosis was not 
present. The regions delimited by black lines over the 
atria define the source of an ectopic focus, and the colour 
is the group or cluster to which the corresponding BSPiM 
was assigned. As can be seen, neighbouring regions share 
the same colours, which means that all the BSPiM 
generated by these ectopic foci are mapped into a closed 
compact atrial region. The results from the cross-
validation showed that in general 32 electrodes were 
enough to predict the cluster to which an ectopic focus 

belongs with an accuracy of 90% in patient without 
presence of fibrosis or with a level of fibrosis of around 
5%. As the number of clusters increase, the coloured 
regions decrease in area (more precision in the prediction 
required), and it is more difficult to related BSPiM to 
cluster, however, the system still performed well using 64 
electrodes (see Figure 4, scores M1r1). 

As fibrosis increased, the system required at least 64 
electrodes to reach the same accuracy. However, in cases 
with fibrosis over 15%, the labels assigned to the atrial 
regions overlapped, which blurred the association 
between BSPiM and specific atrial regions, hampering its 
utility. This effect occurs when a given ectopic focus 
generates a BSPiM map that changes as we increase the 
fibrosis stage. In those cases, the SVM associates an 
ectopic focus to a region/cluster that differs from the 
expected one. As a result, one ectopic focus can map into 
many regions, and then the search area for a cluster 
increases and overlaps with the search area of different 
ectopic focus.  

 
Figure 1: Atrial models including fibrosis (red areas), the 
local activation times in the atria, and the corresponding 
BSPiM in the torso for a given ectopic focus location. 

As can be seen in Figure 3, for stages of fibrosis III 
and IV, a given patch which correspond to an ectopic 
focus is colored with several colors (dotted), meaning that 
it belongs to several clusters. This type of mapping, that 
is not one-to-one, hampers the localization of the ectopic 
focus.  

However, if we allow the overlap, and train the SVM, 
the classification accuracy is still high as shown in Figure 
4, Scores M3r1).  
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Figure 2: ectopic foci clustered in atrial regions (as a 
function of K chosen). 

 

 
Figure 3: ectopic foci clustered in atrial regions for K = 6 
and 8 clusters, and a ratio of fibrosis for stage I, III, and 
IV (upper limit). Colours depict the number of cluster in 
which a group of ectopic foci is map. 

4. Discussion and conclusions 

We have developed a machine learning pipeline that 
can be trained with biophysical model simulations to 
study the complexity of localizing ectopic focus from 
BSPM data. The procedure is similar to others based on 
BSPM and does not require the solution of an inverse 
problem to find the region where the ectopic focus is 
located. However, the presence of extensive dense 
fibrosis affects the detection, increasing the search area. 
There are no other studies that have analysed the effect of 
fibrosis distribution and density on the estimation 
accuracy of inverse algorithms.  

The pipeline has been validated for healthy cases, 
although we do not have clinical data for patients 

showing fibrosis, and therefore results should be 
considered with caution. As future work, different atrial 
geometries and orientations within the torso should be 
considered to account on the patient to patient variability, 
which could affect the ECGs and BSPMs. 

 

 
Figure 4: Location of the electrodes on the BSPM (max. 
256) and the results for the cross-validation as a function 
of the number of electrodes and ectopic clusters. 
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