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Abstract 

The inverse problem of electrocardiography is ill-

posed. Errors in the model such as signal noise can impact 

the accuracy of reconstructed cardiac electrical activity. It 

is currently not known how sensitive the inverse problem 

is to signal processing techniques.  

To evaluate this, experimental data from a Langendorff-

perfused pig heart (n=1) suspended in a human-shaped 

torso-tank was used. Different signal processing methods 

were applied to torso potentials recorded from 128 

electrodes embedded in the tank surface. Processing 

methods were divided into three categories i) high-

frequency noise removal ii) baseline drift removal and iii) 

signal averaging, culminating in n=72 different signal 

sets. For each signal set, the inverse problem was solved 

and reconstructed signals were compared to those directly 

recorded by the sock around the heart. 

ECG signal processing methods had a dramatic effect 

on reconstruction accuracy. In particular, removal of 

baseline drift significantly impacts the magnitude of 

reconstructed electrograms, while the presence of high-

frequency noise impacts the activation time derived from 

these signals (p<0.05). 

 

 

1. Introduction 

The inverse problem of electrocardiography (ECGI) 

reconstructs the electrical activity of the heart from densely 

sampled body-surface potentials and a patient-specific 

heart-torso geometry. This is a promising tool that is 

increasingly being used to guide ablation therapy of 

cardiac arrhythmias, and to help understand the 

mechanisms underlying various cardiac electrical 

disorders [1]. Despite the increase in clinical adoption of 

this technique, previous validation has demonstrated 

spatio-temporal variability in recovered electrograms, 

potentially constraining the accuracy with which 

arrhythmogenic substrates can be identified using this 

approach [2]. 

This inverse problem is ill-posed and errors such as 

noise in the torso potentials significantly impact the 

accuracy of reconstructed cardiac activity [3]. While signal 

processing can be used to remove high frequency noise and 

baseline drift from body surface potentials, it is unclear 

how effective the different methods are in improving ECGI 

reconstructions. Furthermore, it is unknown how ECGI 

reconstructions are affected by signal noise.  

To help answer these questions, an international 

workgroup of researchers was formed at the Computers in 

Cardiology Conference 2017. The objective of this study 

is to present the initial results of the workgroup, evaluating 

the impact of different signal processing methods on a 

standard formulation of the inverse problem using a torso 

tank experimental model. 

 

2. Experimental Data 

The experimental protocol used to obtain this data has 

previously been described [4] and is summarized below. 

All experimental procedures were approved by the 

Directive 2010/63/EU of the European Parliament on the 

protection of animals used for scientific purposes and the 

local ethical committee.  

Experimental data were obtained from an ex-vivo pig 

heart perfused in Langendorff mode, covered by a sock 

(108 electrodes) and suspended into a human-shaped torso 

tank with 128 electrodes embedded. Ventricular and tank 

potentials were recorded simultaneously (BioSemi, the 

Computing in Cardiology 2018; Vol 45 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2018.070



Netherlands) at 2 kHz for approximately 30 s during RV 

pacing. Afterwards, 3D rotational fluoroscopy (Artis, 

Siemens) was used to obtain the position of the epicardium 

and electrodes with respect to the torso tank. 

 

3. Signal Processing Methods 

Different signal processing methods were applied to the 

raw tank electrode potentials using a tree-like structure 

with three distinct stages (Figure 1). The first stage (Filt-

High) used methods to remove high-frequency noise. In 

the second stage, baseline drift removal (BDR) methods 

were applied. In the final stage, signal averaging (SA) was 

used by temporally aligning the pacing spikes of each beat. 

For the following analysis, signals were created by using 

different combinations of the filters of each stages, 

including the original raw potentials, culminating in a total 

of 72 different processed signal sets. SA was always used 

in conjunction with BDR. Precise details of all the methods 

can be found in [5]. 

 

 

 
Figure 1. Tree-like structure (top) used to apply processing 

methods to the raw tank signals with example (bottom) of 

raw (black) and processed (blue) using a moving average 

and spline BDR filters (without SA). Three beats were 

selected for analysis (red bars). 

 

4. Inverse and Comparison Methods  

The boundary element method was used to define the 

forward matrix employing a homogeneous conductivity 

between the epicardial mesh (1012 points) and tank surface 

electrodes (128 electrode points). The inverse problem was 

solved using the Per C. Hansen’s regularization toolbox in 

Matlab, using the Tikhonov zero-order regularization 

method[6]. The L-curve method [7] was used to define the 

regularization parameter (λ). 

For each signal set, the inverse problem was solved for 

the same 3 beats selected from the beginning, middle and 

end of the experiment (illustrated in Figure 1, red bars). As 

those with SA produced a single beat, reconstructed 

electrograms were compared to the un-averaged 3 beats 

recorded by the sock. Comparisons were made using 

Pearson’s correlation and the root mean square (RMS) 

voltage. Activation times were defined by fitting a global 

activation field to activation delays between electrograms 

[8]. Activation was also compared using Pearson’s 

correlation.  

Differences were evaluated using a one-way ANOVA 

with statistical significance defined for p>0.05. Results are 

presented as the median and range unless otherwise 

defined. 

 

3. Results 

The amplitude of reconstructed and recorded 

electrograms were compared using the RMS voltage, with 

examples plotted in Figure 2 (top). Electrograms 

reconstructed after BDR or SA (with or without Filt-High 

processing) had a mean RMS voltage up to four-fold larger 

than without any signal processing (*p<0.05), although 

they were still 0.7 to 1.2 mV smaller than those recorded 

(**p<0.0001). Combining the Pipberger filter with a high 

pass filter of 0.5 Hz and SA produced the largest 

reconstructed mean RMS voltages, although they were 

only 0.02 mV larger than the next best methods.  

 
Figure 2 (top) RMS voltage from recorded (black) and 

reconstructed electrograms using torso signals without 

processing (blue), SA (red), and the Rational Transfer 

Function (purple). (Bottom) comparison of recorded and 

reconstructed mean RMS voltage using the different 

processing methods.  

Figure 3 (top) presents examples of recorded (black) and 

reconstructed electrograms. Reconstructions with Filt-

High processing (purple) qualitatively showed smoother 

signals than without processing (blue). Reconstructed 

electrograms after BDR (red) were substantially noisier. 
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Figure 3 (top) Recorded (black) and reconstructed 

electrograms using no processing (blue), Savitzky-Golay 

BDR (red), and a 30 Hz low pas filter (purple). (Bottom) 

comparison of median correlation using the different 

processing methods.  

 
Figure 4. Torso signals (left) and activation maps (right) 

derived from recorded (top) and reconstructed 

electrograms using torso signals without processing for the 

first (middle) and third (bottom) selected beats.  

Comparison of the median correlation between recorded 

and reconstructed electrograms calculated over the QRS 

complex showed there was no significant difference in 

correlation values between Filt-High and BDR compared 

to no processing (p>0.05). SA (with or without Filt-High) 

significantly reduced the median correlation with values 

0.03 to 0.17 than those without processing (p<0.001). The 

highest correlation values were produced when a 60 Hz 

low pass filter was applied with BDR using a wavelet 

approach, with values 0.02 greater than without signal 

processing. 

 
Figure 5. Torso signals (left) and activation maps (right) 

derived from reconstructed electrograms using 30 Hz low-

pass filter (top) and a spline-based BDR (bottom). 

Figure 4 and 5 present torso potentials (left) and 

activation maps (right) derived from recorded and 

reconstructed electrograms. In Figure 4 activation maps 

are shown for unprocessed signals for 2 different beats in 

the cycle. While the overall activation pattern is the same, 

there are substantial differences in timing between the two 

activation maps. In Figure 5, we see that torso potentials 

with Filt-High processing (but substantial baseline drift) 

reproduced accurate activation maps, while those from 

torso potentials with BDR and large amounts of high 

frequency noise are not.  

 

 
Figure 6. Correlation of recorded and reconstructed 

activation maps using the different processing methods. 

While not significantly different (p>0.05), Filt-High and 

SA substantially improved activation detection with higher 

median correlation values (0.70 vs 0.85 and 0.84 

respectively) and a reduced range of correlation values 

from 0.42 to 0.27 and 0.13 respectively (Figure 6). All 

BDR methods except the wavelet based approached 

reduced accuracy of activation maps. 

Figure 7 presents the λ value used in the inverse 

reconstruction for each of the processed signals. Torso 

signals with BDR or SA (with or without Filt-High) 

resulted in significantly smaller λ values than those without 

any processing or Filt-High alone (p<0.001).  
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Figure 7. Regularization parameters (λ) computed by the 

L-curve method using torso signals processed with the 

different processing methods.  

 

4. Discussion  

In this preliminary study we have evaluated the impact 

of different signal processing methods on a standard 

formulation of the inverse problem using experimental 

model. Processing methods, categorized into three distinct 

groups (high frequency noise removal, baseline drift 

removal and signal averaging), had variable impacts on the 

inverse problem reconstructions.   

The major findings of this stidy are that the removal of 

high-frequency noise (through Filt-High or SA) from the 

torso potentials resulted in smoother reconstructed 

electrograms, facilitating the computation of activation 

times as high-frequency noise can make marker placement 

ambiguous.  

Torso signals without BDR (i.e. no-processing or Filt-

High) resulted in a higher regularization parameter choice 

using the L-curve method (Figure 2). The more baseline 

drift present in these signals, the more regularization the 

signals received,  resulting in very low amplitude signals 

as measured by RMS voltage, but also smoother 

reconstructed signals. Conversely, reconstructions after 

BDR improved the amplitude of electrograms but with it 

the amplitude of high-frequency noise. This noise was too 

great in most cases and resulted in substantial inaccuracies 

during activation time derivations (Figure 6).  

Neither Filt-High nor BDR methods substantially 

altered the global topology of reconstructed electrograms 

(Figure 4). However, SA did change the topology. In very 

small regions of the heart, it was found that reconstructed 

electrograms after SA were different to other inverse 

solutions, with the intrinsic deflection no longer aligned 

with those recorded. Despite this, activation times were 

still accurately derived when using a global fitting 

approach [8]. We believe this morphology change was due 

to slight inaccuracies in the alignment of the QRS during 

averaging, resulting in error being introduced into the 

signals and thus inverse solutions.  

Further investigation into the impact of these processing 

methods on inverse reconstruction is underway using 

additional data sets and different inverse methods. 

 

5.  Conclusions 

The signal processing methods used have a dramatic 

effect on inverse problem reconstruction accuracy, 

particularly on the magnitude of electrograms and the 

activation time derived from these signals.  

 

Acknowledgements 

For the Consortium on ECG Imaging (CEI), all authors 

contributed equally. This work was supported by the 

French National Research Agency (ANR-10-IAHU04-

LIRYC), La Fondation Coeur et Artères (FCA14T2), the 

European Research Council under the European Union's 

Seventh Framework Programme (FP/2007-2013), the 

Fondation Leducq Transatlantic Network of Excellence 

RHYTHM network (16CVD02) and VEGA 2/0071/16 

and APVV-14-0875 in Slovakia. 

 

References 

[1] Dubois R, Shah AJ, Hocini M, Denis A, Derval N, Cochet 

H, Sacher F, Bear L, Duchateau J, Jais P, Haissaguerre M. 

Non-invasive cardiac mapping in clinical practice: 

Application to the ablation of cardiac arrhythmias. Journal of 

Electrocardiology. 2015;48(6):966-74. 

[2] Bear LR, LeGrice IJ, Sands GB, Lever NA, Loiselle DS, 

Paterson DJ, Cheng LK, Smaill BH. How Accurate Is 

Inverse Electrocardiographic Mapping?: A Systematic In 

Vivo Evaluation. Circulation: Arrhythmia and 

Electrophysiology. 2018;11(5):e006108. 

[3] Ramanathan C, Rudy Y. Electrocardiographic imaging: II. 

Effect of torso inhomogeneities on noninvasive 

reconstruction of epicardial potentials, electrograms, and 

isochrones. J. Cardiac Electrophysiology. 2001:12(2) 241–

52. 

[4] Bear LR, Huntjens PR, Walton RD, Bernus O, Coronel R, 

Dubois R. Cardiac electrical dyssynchrony is accurately 

detected by noninvasive electrocardiographic imaging. Heart 

Rhythm. 2018;15(7):1058-69.  

[5] Svehlikova J, Zelinka J, Dogrusoz, Y, Good, W, Tysler M, 

Bear, L. Impact of Signal Preprocessing on the Inverse 

Localization of the Origin of Ventricular Tachycardia. CINC 

2018 (In press).  

[6] Tikonov AN, Arsenin VY. Solutions of ill-posed problems. 

New York: Winston. 1977. 

[7] Hansen PC, O’Leary DP. The use of the L-curve in the 

regularization of discrete ill-posed problems. SIAM Journal 

on Scientific Computing. 1993;14(6):1487-503. 

[8] Duchateau J, Potse M, Dubois R. Spatially coherent 

activation maps for electrocardiographic imaging. IEEE 

Trans. Biomed. Engineering. 2017;64(5):1149-56. 

 

Dr. Laura Bear.  

IHU-Liryc, Site du Hôpital Xavier Arnozan,  

Avenue du Haut Lévèque, 33600 Pessac, France. 

laura.bear@ihu-liryc.fr 

Page 4

mailto:laura.bear@ihu-liryc.fr

