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Abstract 

The cardiovascular disease (CVD) is one of the major 

causes of mortality worldwide. Auscultation of heart 

sounds or phonocardiograms (PCGs) analysis, which is 

an efficient and non-invasive way, has been shown to be 

promising and played an important role in preliminary 

CVD diagnosis. In this study, a deep learning-based 

PCG classification method is proposed, which is mainly 

comprised three steps: pre-processing, PCG patches 

classification using a novel 1-D deep convolutional 

neural network (CNN), and final predicting of PCG 

recordings based on the patch-level results. In order to 

maximize the information flow within the CNN, a block-

stacked style architecture with clique blocks is employed, 

and in each clique block a bidirectional connection 

structure is utilized. Using the stacked blocks, the 

proposed CNN achieves both spatial and channel 

attention, which leads a superior classification 

performance. Besides, a novel separable convolution 

with inverted bottleneck is introduced to efficiently 

decouple features’ dependency between spatial and 

channel-wise dependency of features. Experiments on 

PhysioNet/CinC 2016 reveal a superior classification 

performance and the advantage in parameter efficiency 

of the proposed method comparing to state-of-the-art 

methods. 

 

1. Introduction 

A heart is a vital organ of body and the cardiovascular 

disease (CVD) is one of the leading causes of mortality 

worldwide. Many pathological conditions of the 

cardiovascular system are reflected in some heart-related 

signals, such as the heart sound signals (i.e., 

phonocardiograms, PCGs). Nevertheless, the accuracy of 

auscultation depends on the skills and subjective 

experiences of the physicians which are obtained from a 

long physician experience [1]. Therefore, an objective 

and automatic method for heart sound signals analysis is 

needed. Nowadays, automatic heart sound classification, 
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which has the potential to screen for pathologies in a 

variety of clinical applications enabling reduction of 

costly and time consuming manual examinations, is 

becoming a promising research field based on the 

techniques of biological signal processing and artificial 

intelligence [2]. 

In recent years, deep learning has achieved 

tremendous success in many practical tasks owing to its 

amazing feature representation power. Convolutional 

Neural Networks (CNNs), as one of the typical deep 

learning architectures combing feature extraction and 

classification together, are now commonly used in many 

fields [3]. More recently, some CNN-based PCG 

classification methods [4-6] are proposed, whereas they 

usually have complicated pre-processing and post-

processing or they are not sufficiently expressive to learn 

the complex pattern of heart sound (e.g. simple 

architecture, a small number of filters and layers, etc.). 

Therefore, a novel 1-D deep CNN structure for PCG 

classification is proposed in this paper. The proposed 

CNN is a block-stacked style architecture which 

enhances the information flow of the CNN using 

bidirectional connections and achieves the state-of-the-

art performance with exceedingly fewer parameters. 
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Figure 1. The pipeline of the proposed CNN architecture. 

The symbol “+” within each circle represents a channel-

wise concatenating operation of feature maps. 
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Figure 2. The propagations of Clique block with 4 composite layers are depicted. Every feature maps are both the input 

and the output of other feature maps, excepting the input node of blocks. Each ellipse noted with CL denotes a 

composite layer, and expansion ratio of 2 are shown in the composite layer as a concise example. 

 

2. Methods 

The main pipeline of the proposed method can be divided 

into three parts: pre-processing, automatic classification 

of PCG patches using a novel 1-D deep CNN, merging 

the patch-level predictions to recording-level results 

based on a majority voting decision strategy. 

2.1 Pre-processing  

The 2-D representation of raw input signals is the 

most common choice in the majority of state-of-the-art 

audio classification algorithms, e.g., Mel-frequency 

cepstral coefficients (MFCCs), Power Spectral Density 

(PSD), and so on. Although the 2-D representation 

represents acoustically meaningful patterns well, it 

requires an extra transforming procedure and a set of 

hyper-parameters. Thus, the 1-D raw waveform PCGs 

are utilized as the input in this study. The raw PCG 

signals are resampled to 2000 Hz, and this is followed by 

the band filters which are used to remove the high 

frequency noises. Since the structural characteristics of 

our proposed CNN architecture, the size of input needs 

to be fixed. Consequently, the PCG recordings are 

segmented into several 3-seconds long patches with a 

stride of 1 second. More importantly, the segmentation 

of PCG is able to enlarge the scale of the training set, 

which is crucial to deep learning-based methods. 

 

2.2 CNN architecture 

Clique blocks. The segmented PCG patches are fed 

into the proposed CNN model directly. Our proposed 

model is partly inspired by the CliqueNet [7] combining 

both recurrent structure and spatial attention mechanism. 

As illustrated in Figure 1, the proposed CNN model 

consists three clique blocks and two transition blocks. 

The feature maps within each clique block are connected 

bidirectionally by several composite layers (shown in 

Figure 2). And the propagations of each block can be 

divided into two stages. The propagations in stage 1 are 

similar to the DenseNet [8] that all the layers are densely 

connected unidirectionally. Then the extra updating of 

these layers is operated alternately in stage 2 to make 

sure that each layer is capable to receive the feedback 

information from the most lately updated layers. Only 

the output features of stage 2 are supposed to reach next 

clique block through adjoining transition block. In order 

to improve the classification accuracy by using the multi-

scale features, replicas of the output features of every 

clique blocks are firstly compressed to half of their 

original dimensions of channels by point-wise 

convolution layers. Then, the compressed output features 

of each clique block are connected with the input features 

of this block. After that, the connected features are fed 

into global pooling layers severally to achieve a squeezed 

multi-scale representation of corresponding clique block. 

Lastly, the squeezed features of different scales are 

merged together and ended with a fully-connected layer 

with softmax to realize the accurate classification. 

Separable convolutions with inverted bottleneck. 

Based on the hypothesis that the mapping of cross-

channel correlations and spatial correlations in the 

feature maps can be entirely decoupled, the separable 

convolution with inverted bottleneck is introduced in 

each composite layer to optimize the efficiency of 

parameters and memories with classification 

performance improvement. As illustrated in Figure 2, the 

separable convolution with inverted bottleneck can be 

separated into three steps roughly: 1) expanding the low 

dimension features in a higher dimension; 2) extracting 

features in this higher dimension by depth-wise 

convolutions; 3) projecting the high dimension features 

back to the low dimension. It should be noted that, the 

Batch Normalization (BN) is employed before each 

convolution, while the Rectified Linear Unit (ReLU) is 

just adopted before depth-wise convolution and the 

second point-wise convolution. This type of inverted 

bottleneck structure has a strong feature representation 

ability, and it is an inversed structure contrast to the 

hourglass shaped bottleneck structure used in the 
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DenseNet [8] and the ResNet [9]. The most similar work 

is the inverted residual bottleneck introduced in the 

MobileNet V2 [10], whereas the bidirectional feature 

map connection is employed in our CNN to enhance the 

information flow instead of using the residual connection. 

Transition blocks with attention mechanism. 

Connecting all the layers of the network in a single block 

is inherently memory demanding, i.e., there will be 

1L L （ ） inter-layer connections when the network is 

consisted of L  layers. In order to overcome this 

drawback and to obtain multi-scale features, the spatial 

size of feature maps need to be reduced after different 

clique blocks. Therefore, the transition blocks are 

designed to reduce the spatial size by equipping average 

pooling layers with size of 2. In our CNN model, we 

insert a transition block between two neighbouring 

clique blocks. Moreover, as depicted in Figure 3, an 

attention mechanism [11] is utilized in each transition 

block to perform dynamic channel-wise feature 

recalibration. Despite a slightly parameter increase will 

be introduced, it reweights the feature maps in each 

transition block for ensuring that more useful features 

can be exploited efficiently by the subsequent layers. 

Implementation details. Before entering the first 

clique block, a convolution layer with filter size of 7, 

stride of 2, and a max pooling layer with size of 3, stride 

of 2 are employed to extract the initial low-level features 

and reduce the spatial size of feature maps. In each clique 

block, 5 composite layers are equipped. Each of them 

connects all the previous features as input, and outputs 

features with 12 channels. And the depth-wise 

convolution layers within every composite layer use the 

small size convolution layers (with size of 3, stride of 1) 

to extract features. Moreover, an expansion ratio of 6 is 

employed in every composite layer (i.e., the number of 

channels in intermediate feature maps is 6 times than that 

of the input and output feature maps). As for the fully-

connected layers within each transition block, the 

number of intermediate nodes is invariable rather than 

compressing it into a lower dimension like [11]. 
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Figure 3. The transition block is stacked by BN, ReLU, 

attention mechanism and average pooling layer. 

2.3 Majority voting 

The ultimate goal for PCG classification is to classify 

the PCG recordings into different categories. Thus, the 

majority voting is introduced to transform the patch-level 

classification results into PCG recording-level prediction 

results. In this strategy, the number of predicted patches 

will be counted. Once the number of normal predicted 

patches is larger than abnormal in one PCG recording, 

this recording will be labelled as normal, and vice versa. 

Moreover, if the numbers of patches for both categories 

are equal in one recording, the mean of the raw predicted 

probability of every patch will be compared to give the 

final prediction of this PCG recording. 

 

3. Experiments 

3.1 CNN training 

We conduct the experiments on PhysioNet/CinC 2016 

[12]. Since only the training set is available (665 

abnormal and 2488 normal recordings), the 10-fold cross 

validation is adopted to evaluate the classification 

performance. We train the CNN model from scratch 

without any data augmentation. A weighted cross 

entropy with the rate 0.25 to 1 (normal to abnormal) is 

adopted as the loss function on account of the class 

imbalance. Stochastic gradient descent (SGD) with 0.9 

Nesterov momentum is chosen as the optimizer, and a 

mini-batch size of 64 is used. Weight decay of 10-4 and 

dropout layers with rate of 0.1 are also applied to prevent 

overfitting. In our training procedure, the model is 

trained for 40 epochs with early stop, and the initial 

learning rate is set to 0.1 while the learning rate decay of 

0.1 is implemented at both epoch 20 and 30.  

 

3.2 Results  

To compare with other algorithms, several evaluation 

indicators are introduced: accuracy (Acc), sensitivity (Se), 

specificity (Sp), overall score (Score), which are defined 

as follows: 

TP TN
Acc

TP FP TN FN
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   (4) 

where TP, TN, FP, FN are given as follows: 

 True positive (TP): The number of correctly 

predicted abnormal recordings.  

 True negative (TN): The number of correctly 

predicted normal recordings. 

 False positive (FP): The number of incorrectly 
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predicted normal recordings. 

 False negative (FN): the number of incorrectly 

predicted abnormal recordings. 

Meanwhile, the number of trainable parameters (Params) 

is also taken into consideration to measure the scale of 

CNN model. 

Table 1 shows the experimental results in comparison 

with existing CNN-based algorithms in literatures [4-6]. 

Ryu et al. [4] used the Windowed-sinc Hamming filter 

algorithm to remove the irrelevant noises from the raw 

PCG signals before feeding PCG patches into a 1-D CNN 

for classification. In the method of PSD-CNN [5] and 

MFCC-CNN [6], the 2-D representative of PCGs were 

adopted as the inputs. The difference is that [6] used the 

MFCCs to transform the raw signals into 2-D feature 

rather than PSDs which are employed in [5]. From Table 

1, we can find out that our proposed method yields the 

highest Se that indicates the percent of correctly 

classified PCG as reflecting abnormal heart function. 

Additionally, the proposed method also obtains the best 

performance on Score with minimal trainable parameters. 

In spite of slight decreases in Acc and Sp, our proposed 

model uses 65 times fewer parameters than MFCC-CNN 

[6]. The superior performance of the proposed method is 

mainly owing to the recurrent structure that maximally 

enhances information flow and reuses the feature maps. 

Moreover, it is also on account of the novel separable 

convolution which efficiently extracts features in a 

parameter-saving way by decoupling the spatial and 

channel-wise features. In general, the experiment results 

reveal a promising light weight model that we proposed 

for classifying normal and abnormal heart sounds. 

 

Table 1. Evaluation results for the proposed method in 

comparison with existing CNN-based algorithms. 

Results that surpass all competing methods are in bold. 

Evaluation 

criteria 

1-D 

CNN 

[4] 

PSD-

CNN 

[5] 

MFCC-

CNN 

[6] 

Proposed 

method 

Acc 0.8933 0.8905 0.9331 0.9321 

Sp 0.9282 0.9102 0.9619 0.9512 

Se 0.7608 0.8150 0.8271 0.8581 

Score 0.8445 0.8626 0.8945 0.9046 

Params 0.19M 0.24M 12.41M 0.19M 

 

4. Conclusion 

In this paper, we developed a novel 1-D CNN 

architecture for PCG classification. This architecture is 

designed to efficiently reuse the feature maps with lower 

parameter consuming, and without any complex pre-

processing or post-processing steps. Experiments 

conducted on PhysioNet/CinC 2016 demonstrate the 

effectiveness of the proposed method, which achieves 

state-of-the-art classification performance in a 

significant parameter-saving way. The promising 

performance of the proposed method makes us hopeful 

that with further improvement the feature reusing and 

minimization of the trainable parameters, the network 

may be suitable for embedded or mobile applications. 

Moreover, the environment noises will be taken into 

consideration in our future work to enhance the 

robustness of the proposed method for facing the 

practical clinical environment. 
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