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Abstract

It has been shown recently that inverse electrophysio-
logical imaging can be improved by using a deep genera-
tive model learned in an unsupervised way so that cardiac
transmembrane potential and underlying generative mod-
els could be simultaneously inferred from the ECG. The
prior and conditional distributions learned in such a way
are, however, directly affected by the architecture of neural
network used in unsupervised learning. In this paper, we
investigate the effect of architecture in learning represen-
tation and generalizing to new test cases. By comparing
reconstruction of three types of sequence autoencoder, we
show that different sequence autoencoders might be focus-
ing on different aspects of TMP and might perform differ-
ently according to the metric used to measure reconstruc-
tion. We also analyze the latent space in different archi-
tectures and discuss important questions raised by these
observations.

1. Introduction

Noninvasive electrophysiological imaging refers to the
estimation of cardiac electrical signals from the body sur-
face electrocardiograms (ECG). It requires solving an ill-
posed inverse problem where the difficulty of estimation
increases as we move from estimation of epicardial po-
tential to that of myocardial and endocardial potential.
To compensate the lack of information in the ECG sig-
nal, prior knowledge about the cardiac potential is used
to constrain the inverse solution [1, 2]. An effective way
to constrain inverse solution is to use physiological knowl-
edge about cardiac electric propagation. This is realized
by constraining the cardiac electrical activity according
to a physiological generative model [3, 4] during infer-
ence. The physiological model is typically parameterized
by model parameters. During inference, it is highly desir-
able to simultaneously adapt high dimensional inverse sig-
nal as well as model parameters given the ECG data. How-
ever, reliable inference is very difficult and computation-
ally expensive because of high dimensionality of model
parameters and their complex relation with electric signal,
which, often, cannot be expressed in closed form. As a
workaround, researchers focus on estimation of model pa-

Figure 1. Probabilistic graphical model of ECG generation

rameters only [5], inverse signal only [4] assuming fixed
model parameters or inverse signal as well as model error
introduced due to error in parameters [6].

Ghimire et al [7] addressed the challenges in simultane-
ous estimation of parameters as well as cardiac transmem-
brane potential (TMP) by replacing complex physiologi-
cal model with a deep generative model learnt by using
autoencoder from samples of TMP. In this approach, the
quality of relation between latent factor and the TMP as
well as prior distribution of latent factor are all directly af-
fected by the architecture of autoencoder used in learning.
Hence, in this paper, we try to understand the role of au-
toencoder architecture in learning and representation of the
TMP by comparing reconstruction ability of three different
architectures of sequence autoencoder.

2. Background
2.1. Probabilistic Formulation of Inverse

Problem

The biophysical relationship between cardiac trans-
membrane potential (TMP), U and body-surface ECG,
Y can be described by a linear measurement model [4]:
Y = HU , where Y and U are both matrices with each
column denoting one time instant, H is called the forward
matrix and is specific to the heart-torso model of an indi-
vidual. The inverse problem is to U from Y .

We utilize the probabilistic graphical model framework
to represent the generation of TMP and ECG as shown in
Fig. 1. The forward relation is modeled as a likelihood
distribution p(Y |U) = N (HU , σ2I). The prior genera-
tion model of TMP given the value of model parameters
can be represented with another conditional distribution as
p(U |a). The ECG matrix Y is shaded because it is ob-
served random variable. The objective here is to obtain
joint posterior distribution p(U ,a|Y ). Typically, there is
no closed form relation for p(U |a) and is given by some
simulation model, because of which the posterior distribu-
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tion is analytically intractable. Sampling based approach
could be used in such cases, but it would require running
simulation for a large number of times, and is, thus, com-
putationally quite expensive if not infeasible.

2.2. Deep Generative Solution

Ghimire et. al. [7] addresses the problem of joint esti-
mation by replacing original TMP generation model with
a deep generative model. To do so, a sequence variational
autoencoder is used to learn a low dimensional latent rep-
resentation. This latent variable becomes low dimensional
generative factor, Z and the decoder of autoencoder be-
comes the deep generative model. Thus, authors present
an equivalent probabilistic graphical model replacing com-
plex relation between physiological parameters and TMP
with deep generative model, which is simple enough to al-
low joint estimation of generative factor and posterior dis-
tribution of TMP given the ECG. Simultaneously adapting
generative factor with TMP results in its better estimate.

Obviously, the autoencoder used to learn representation
in an unsupervised manner plays a crucial role in this task.
In this paper, we try to analyze how different architecture
choice for autoencoder affects its representation and gen-
eralization ability.

3. Preliminaries

3.1. Autoencoder

Autoencoder is a deep neural network that reconstructs
the same signal at the output as is fed in the input by go-
ing through multiple layers of neural network. A common
architecture of neural network has bottleneck which com-
presses input signal to a low dimensional latent code and
then reconstructs the original signal from latent code. The
portion of neural network from input to the latent code is
called an encoder and that reconstructs signal from latent
code is called decoder. Depending on the training pro-
cedure, there are many versions like denoising, contrac-
tive or sparse autoencoder. A slightly different version is
called variational autoencoder [8] which derives loss func-
tion from variational lower bound of data log likelihood
and introduces stochasticity to the latent code.

3.2. Sequence Encoder Decoder

Autoencoders are usually trained in a setting with vec-
tor input and output; sequence autoencoders have been ex-
plored only recently in the machine learning literature. To
deal with sequences, recurrent neural networks (RNNs)
and long short-term memory (LSTM)s are used in both
the encoder and decoder inspired by sequence to sequence
language translation [9] in natural language processing

(NLP). Typically, to obtain a compressed latent representa-
tion from the whole sequence, last hidden code from latent
sequence is considered and full sequence is reconstructed
from it using multiple layer LSTM in the decoder.

4. Architectures

In this paper, we experiment with three architectures:
Language, svs and sss architecture. Language architec-
ture is of the same form as used in Language translation
[9], and has deterministic latent space. Other two archi-
tectures have stochastic latent vector as described in [10].
Fig. 2 shows a general architecture for a stochastic model
at the bottom half. As shown, both encoder and decoder
has two layer LSTMs. Both, svs and sss are in the stochas-
tic setting where there are two networks for mean(M) and
variance(S) while the Language architecture does not have
variance network. The major difference in three architec-
tures is explained in the top half of the Fig. 2. In the lan-
guage model, the output from last hidden unit of LSTM
is directly fed to the decoder and then subsequent predic-
tions are computed recurrently. The svs architecture uses
additional fully connected layers to map sequence of latent
codes into a vector – hence the name sequence to vector to
sequence (svs). In the sss architecture, however, the hidden
codes from all units are represented as a matrix latent code
from which input TMP signal is reconstructed through a
mirrored architecture.

5. Experiments
5.1. Implementation details

Training and test sets of transmembrane potential (TMP)
were generated by using Aliev Panfilov model [11] on a
human-torso geometry model. By varying two parame-
ters: origin of excitation and tissue properties representing
myocardial scar, we generated about 600 simulation data
with the combination of 17 different tissue property con-
figurations and 35 different origins of excitation. To test
generalization ability, test data were selected with differ-
ent origin of excitation than those used in training.

We used ReLU activation function in both encoder and
decoder, ADAM optimizer and a flat learning rate of 10−3

in all three architectures.

5.2. Results and Discussion

We compare three architectures in their ability to gen-
eralize in new test cases. We measure the reconstruction
accuracy with four metrics: 1) mean square error (MSE)
of TMP, 2) correlation of TMP, 3) dice coefficient of the
scar region, 4) correlation of activation time. Fig. 3 com-
pares TMP propagation reconstructed by using three ar-
chitectures with the ground truth. The Language model
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Figure 2. Bottom: Common skeleton for three architectures, Top: Three architectures of differing in their ways of converting output from last layers
of LSTM to latent representation

Figure 3. Comparison of transmembrane potential propagation

Figure 4. Comparison of reconstruction using three architectures

matches the ground truth better than other architectures at
the beginning of the propagation sequence. However, later
on, other two methods are qualitatively better. The scar
region, however, seems to be better identified by sss archi-
tecture compared to other two.

The graphs on Fig. 4 shows average of 20 tests, each
performed by randomly drawing 200 samples from the test
set. It is interesting that the Language model performs
quite good when measured with mean square error and cor-
relation of TMP. But, when we measure dice coefficient of
scar and correlation of activation time derived from the re-
constructed TMP, the Language architecture performs the
worst. It suggests that Language model might be good at
preserving temporal consistency but not so much at learn-
ing underlying factors. On the other hand, svs and sss ar-
chitectures seem to be better learning underlying factors,
which might be because of the stochastic latent space in
these two architectures.

We also visualized the latent representation of the whole
dataset- training and test set- of three different architec-
tures. In Fig. 5, top row shows latent point cloud colored
according to the segment where origin of excitation lies.
Similarly, bottom row shows latent point cloud colored ac-
cording to the segment where scar lies. The heart is divided
into 17 segments according to American heart association
(AHA) standard and each color denotes one segment of
the heart where scar/origin lies. We observe that the latent
representation is clustered by the location of origin of ex-
citation in all three architectures, but not by the location
of scar region. It might be because there were not many
examples of scar regions from the same segment for the
network to generalize. We need further analysis.

The results are thought-provoking. However, we caution
that our work is preliminary in that we tried it on a single
geometry and relatively small dataset for a deep network.
We leave some open questions triggered by these obser-
vations: What does it mean that a method performs better
with respect to RMSE error but not so well with respect to
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Figure 5. Visualization of point cloud in the latent space corresponding training and test data

error of origin of excitation? Does stochasticity play a role
in better representation? Why did the neural network better
represented the origin of excitation than the scar region?

6. Conclusion

We have shown that different choices of autoencoder ar-
chitecture affects generalization ability as well as recon-
struction of underlying aspects of TMP. The pattern in la-
tent representation was consistent among architectures but
differed according to origin or excitation and region of
scar. In the future, we will confirm these findings in a
larger dataset and investigate deeper to understand these
differences.
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