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Abstract

Image artefact, resolution and contrast all impact our
ability to quantify anatomy. In the context of patient-
specific simulations this uncertainty in shape can lead to
uncertainty in model predictions. We propose and apply a
method for quantifying uncertainty in shape and demon-
strate the impact of uncertain shape on activation time
predictions in a model of cardiac electrophysiology acti-
vation.

1. Introduction

Patient-specific models of the heart are gaining impor-
tance in the treatment of heart diseases as they help to pre-
dict procedure outcomes and guide ablation targets, [1].
Recently, we developed and validated a novel method to
generate patient-specific models of left atrial electrophys-
iology from clinical measurements [2] and tested its abil-
ity to differentiate aberrant activation patterns [3]. Clini-
cal measurements, however, are affected by noise; hence,
quantifying how measurement uncertainty affects model
predictions represents an important step in communicat-
ing the confidence of model predictions to cardiologists.
An important building block in this process is to consider
the impact of uncertainties in the measurements of atrial
geometry that are used to generate the mesh on which the
model is solved. In this work, we propose a method to
quantify the uncertainty on the anatomy of the left atrium.
We then show the effect of these anatomical uncertainties
on simulations of local activation times.

2. Method

In the next subsections, we introduce a method to char-
acterize the uncertainty about the true anatomy X given
an observations Xobs, i.e., find p(X|Xobs). Dealing with
the uncertainty in the high-dimensional space where X is
located is computationally expensive and often this com-
plexity furnishes information about the uncertainty that is
negligible. Hence, we characterise the uncertainty through

its principal components, [6].

2.1. Anatomies

We recorded a training set of M=17 left atrial anatomy
using an electro-anatomical mapping system (EAM, St
Jude Velocity) and a test set of 4 left atrial anatomies us-
ing a different EAM (Biosense Carto). On each of the
21 anatomies, we manually clipped the pulmonary veins
(PV) and the left atrial appendage (LAA). We thus ob-
tained anatomies described by 7021 ± 1661 points (train-
ing set) and by 9209 ± 2368 (test set) in an irregular tri-
angle shell mesh. Next, we aligned each anatomy to a ref-
erence atlas [4] formed by Np = 6132 vertices. We then
registered the atlas to each anatomy, by minimising the dis-
tance between the two manifolds using Deformetrica [5].
Each anatomy could then be described by the same fixed
number of points.

We denote the vector ([x1, y1, z1, ..., xNp , yNp , zNp ]
T ) of

the x,y and z point coordinates of the deformed atlas ob-
tained by unrolling the point coordinates with Xobs ∈
R3Np ; with X ∈ R3Np the anatomy in the absence of un-
certainty and with e ∈ R3Np a random vector representing
the uncertainty in observations of the anatomy, such that:
Xobs = X + e. We further assume a normally distributed
uncertainty: e ∼ N (0,ΣX), with a mean of zero and a
covariance matrix ΣX, with the correlation depending on
the relative spatial distance.

2.2. Principal component analysis (PCA)

We reduced the number of parameters representing un-
certainty in the anatomy by describing the anatomy as a
linear combination of a reference mean value µ and of
Nmodes � 3Np modes:

X ' µ+ Uλ

We determined the modes that capture the largest vari-
ability on the atrial anatomies with the principal compo-
nent analysis (PCA) [6] on a training set, reducing the di-
mensionality of the problem to Nmodes = 16 independent
parameters.
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We first evaluated the empirical mean µ:

µ =
1

M

M∑
k=1

Xk
obs

Next, we build the matrix Aobs ∈ R3Np×M where the k-th
column is obtained as: Aobs∗,k = Xk

obs − µ and we evalu-
ated the principal axes [6] with the singular value decom-
position (SVD):

Aobs = UΘV T

Here U ∈ R3Np×(M-1) is the matrix of the left singular
vectors and coincides with the principal axes, and Θ ∈
R(M-1)×(M-1) is the diagonal matrix of the singular values
Θi. The variances σ2

i captured by each mode are obtained
as follows:

σ2
i =

Θ2
i

M− 1

and depicted in figure 1.

Figure 1. Plot of the variances σ2
i captured by each mode

2.3. Error propagation

We decompose a new observation X∗obs as the sum of
the reconstruction from the principal component represen-
tation, the truncation error and the uncertainty:

X∗obs = X∗ + e = µ+ Uλ∗ + e⊥ + e

here the vector λ∗ ∈ RNmodes represents the reduced rep-
resentation of X∗, and e⊥ represents the truncation error in
the absence of uncertainty. Even though deterministic, the
truncation error e⊥ is unknown and hence modelled with
a probability distribution: e⊥ ∼ N (0,Σe⊥). Finally, we
define the global error as follows: eTOT = e+e⊥, with dis-
tribution: eTOT ∼ N (0,ΣeTOT) where ΣeTOT = ΣX + Σe⊥
and we introduce a model for ΣeTOT .

2.4. Prior and posterior distribution on λ∗

λ∗ prior distribution We assume the prior distribution
λ∗ ' N (0,Σλ) and Σλ = ΘTα2Θ. Using the samples
from the training set, we then evaluate α2 and prove the
existence of variables λ̂i ∼ N

(
0, α2I

)
, such that λi =

Θλ̂i. For each sample, we have:

λ̂i = Θ−1UT
(
Xi

obs − µ
)
, i = 1 . . .M

If the null hypothesis holds, λ̂ij , i = 1 . . .M, j =
1 . . . Nmodes represent Ndof = Nmodes ×M realizations of
N
(
0, α2I

)
. Next, we approximate α2 with the sampling

covariance, s2:

s2 =
1

Ndof − 1

M∑
i=1

Nmodes∑
j=1

(
λ̂ij − µ

)2
, µ =

1

Ndof

M∑
i=1

Nmodes∑
j=1

λ̂ij

Finally, we performed a Kolmogorov Smirnov test to
check for normality, and found no evidence to reject the
null hypothesis (p=0.56). The QQ plot showed excel-
lent agreement with a standard normal distribution (not
shown).
λ∗ posterior distribution Being the problem conjugate

we obtain a normal posterior distributionN (µλ,post,Σλ,post),
and Bayes formula p(λ∗|X∗obs) ∝ p(X∗obs|λ∗)p(λ∗)
yields:

p(λ∗) ∼ N (0,Σλ)

p(X∗obs|λ∗) ∼ N (µ+ Uλ∗,ΣeTOT)

p(λ∗|X∗obs) ∝ exp

(
−
λ∗

T

Σ−1λ,postλ
∗ − 2λ∗

T

Σ−1λ,postµλ,post + a

2

)

and we thus obtain the posterior distribution for λ∗:

p(λ∗|X∗obs) ∼ N (µλ,post,Σλ,post) (1)

Σλ,post =
(
Σ−1λ + UT Σ−1eTOT

U
)−1

µλ,post = Σλ,postU
T Σ−1eTOT

(X∗obs − µ)

2.5. Sampling

Once a new anatomy X∗obs is measured with EAM, we
draw Nsamples i.i.d. samples from p(λ∗|X∗obs), obtained
by applying (1); next, we obtain the anatomy samples
(X1, ..,XNsamples) with the formula: Xk = µ+ Uλk

3. Results

We sample from the uncertainty distribution of each of
the 4 anatomies depicted in figure 2. We assumed the fol-
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Figure 2. Anatomies

lowing form for ΣeTOT :

Σ
ixk ,jxl
eTOT = ν2 exp

(
−
(
dij

l

)2
)
δxk,xl

Here ν2 represents the characteristic scale of the covari-
ance, l represents the characteristic length of the space
correlation, dij represents the geodesic distance between
points i and j, δxk,xl represent the Dirac delta between the
space components xk and xl and index ixk represents the
entry in ΣeTOT corresponding to node i and component xk.

As the typical discrepancy between anatomies obtained
with EAM and anatomies obtained with MRI scan is
' 5mm [7], in this work we considered the following
characteristic values: ν2 = [25, 49, 100, 225, 784] mm2,
while we arbitrarily chose a width l equal to 10 mm.

Next, for each sample, we computed LATs with a
graph-based eikonal model [8] and the modified Mitchell-
Schaeffer (mMS) ionic model [9]. For the model pa-
rameter values we selected τin = 0.1ms, τout = 2.5ms
and vgate = 0.1 and we chose an isotropic diffusivity of
σm = 1.0cm2/s, consistent with [2, 10]. To take into
account the effect of low mesh resolution on the propa-
gation through a graph, we set the corrective coefficient
to δ = 0.92. This value furnished the minimum RMS
between the LATs evaluated with the eikonal model and
those computed solving the monodomain equations with
the finite elements method (FEM) on a discretized domain
characteristic size h ' 300µm.

Next, we evaluated the expected value and the stan-
dard deviation of LATs with the Monte Carlo [11] for-
mula. For each anatomy and for each value of ν2, we
draw Nsamples = 12, 000 i.i.d. anatomy samples; overall,
the procedure required ∼ 70 minutes for a single case and
for a single value of ν2. The l2 norm of the difference
between the expected value evaluated with 12k samples
and the expected values evaluated with 10k samples was
2.6ms± 0.58ms, or∼ 1% of the total activation time. Fig-
ure 3 shows the distribution of expected value for LAT, and
the standard deviation for each of the 4 patients and when
ν = 28 mm.

Figure 4 shows the maximum value of LAT standard de-
viation as a function of the uncertainty standard deviation
ν; each line represents a patient.

4. Discussion

In this work, we have presented a method to evaluate
the statistics of a space-dependent variable and to infer a
shape when the data quality is not high. We parameterised
the uncertainty on the domain using PCA. When the uncer-
tainty affects the computational domain, a widely used ap-
proach is represented by stochastic collocation techniques,
[12, 13]. This approach, however, does not take into ac-
count any spatial correlation on the domain uncertainty.
Indeed, this uncertainty is described by parametrising the
uncertain domain through a linear composition of shape
functions, weighted with Karhunen-Loeve (KL) approxi-
mation. This is not the case with the approach we pre-
sented: first, the spatial correlation is implicitly described
by principal axes; second, among all the possible orthog-
onal shape functions that represent space uncertainty, the
principal axes are those that minimise the truncation error;
third, the coefficients of the reduced representation of X
are mutually independent and ordered: we can thus cap-
ture the largest variability (in the statistical sense) keeping
the same accuracy using a smaller number of parameters.

5. Conclusions

We have developed a method to sample from an
anatomy probability distribution and to infer model uncer-
tainty. We took advantage of a PCA decomposition for the
anatomy, obtaining a method computationally efficient.
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