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Abstract 

Absence of P-waves in ECG records with irregular 

interbeat intervals (R-R) is a sign of Atrial Fibrillation 

(AF). Detection of P-waves in ECG beats or even average 

beats could be challenging if the artifact resembles a P-

wave, or an actual P-wave is buried in the artifact. We 

developed a neural network algorithm to generate the 

ECG beat clusters in segments of the record. Beats with 

matching QRS complexes were clustered using Self-

Organizing Map (SOM) technique and then cross-

correlated to combine and generate the dominant clusters. 

This process helps to eliminate the abnormal or artifact-

corrupted beats. Fiducial points of the dominant average 

beat were measured by morphological techniques. If the P-

wave was detected in the average beat, a smaller search 

window was defined for individual beats to exclude the 

potentially false P-waves. A set of P-wave features 

determined the presence of P-wave throughout an ECG 

segment. Our algorithm was tested on several datasets 

with annotated intervals for some cardiac rhythms. A 

decision tree ensemble of bagged trees classifier was 

developed and applied to the P-wave and interbeat interval 

features, resulting in AF/non-AF classification with 

average F1 score of 96.0% in training subset and 95.6% in 

test subset of all records. 

 

1. Introduction 

Atrial Fibrillation (AF) is the most common sustained 

cardiac arrhythmia associated with high rate of morbidity 

and mortality. AF is seen in about 1-2% of population and 

its prevalence is increasing rapidly [1,2].  Early detection 

and treatment of AF can prevent its subsequent 

complications such as stroke, heart failure, and sudden 

death [3]. 

Silent (asymptomatic) AF is associated with the same 

risk of cardiac diseases as symptomatic AF [4,5]. Unless 

identified incidentally in the patient’s short ECG record, 

asymptomatic AF requires prolonged ECG monitoring 

with Holters or wearables which could be expensive and 

uncomfortable. 

Several automated AF detection algorithms have been 

suggested in the past, however, automatic AF detection is 

still a challenging task, mostly due to its episodic nature.  

Real-time data analysis techniques have dramatically 

evolved in recent years because of the advent of powerful 

processors in devices such as smartphones. Numerous 

machine learning and deep learning algorithms have been 

developed to analyze the increasing amount of data 

including real-time clinical measurements and 

physiological signals. Traditional machine learning 

algorithms analyze the data using a set of features designed 

by experts. Artificial neural networks utilizing deep 

learning methods can analyse a large set of data without 

the prerequisite to define a feature. 

The 2016 European guidelines for the management of 

atrial fibrillation [6] recommends the diagnosis of AF in 

ECG by detecting its typical pattern which is completely 

irregular interbeat intervals between the beats with no 

distinguishable P-waves in an episode lasting at least 30 

seconds. 

In AF detection studies, ventricular response has been 

analyzed using the interbeat interval irregularity features 

including the interbeat statistical measures [7-8] and 

entropy [9], while the atrial activity associated with the 

absence of P-waves is extracted from morphology [10] as 

well as wavelet analysis techniques [11]. 

In this study, we first utilized an unsupervised neural 

network algorithm to cluster the ECG beats of the same 

type and eliminate the abnormal or artifact-corrupted beats 

in the 30-sec segments of the ECG intervals annotated with 

the same rhythm. Secondly, we sought the potential P-

waves in the cluster average beat and each beat in the 

dominant rhythm cluster, which in turn defined a set of 

atrial activity features applied to the classifier along with 

the ventricular activity (interbeat intervals) features. A 

decision tree ensemble classifier of bagged trees was used 

to detect the AF rhythm in the ECG segments and measure 

the classification performance. 

The rest of this paper is organized as follows. In Section 

2, we describe the algorithm and the database, and discuss 

the details of the beat clustering algorithm, P-wave 

detection, feature extraction, and classification method. 

Section 3 presents the results. Section 4 provides the 

discussion and conclusions.  
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2. Method and Material 

2.1. Algorithm 

In this subsection, we first explain our unsupervised 

neural network algorithm, generating clusters of ECG 

beats, and find dominant combined clusters. We will then 

present our morphological P-wave detection technique 

which seeks the P-wave fiducial points in the average beat 

and every beat in the dominant cluster. A set of P-wave 

features are then defined along with the NN interval 

features. Last step is AF classification of the segments 

using a decision tree ensemble of bagged trees.  
 

2.1.1. Beat Clustering  

We split the datasets of ECG records with expert-

annotated rhythm intervals into 30-sec non-overlapping 

segments to generate a database of known cardiac rhythms 

with fixed length. The intervals shorter than 30 seconds 

were discarded. Using our QRS peak detection algorithm, 

we identified the QRS peaks in the 30-sec ECG segments 

to form a set of beats aligned at their QRS peaks.  

We used a Self-Organizing Map (SOM) [12] neural 

network algorithm to cluster the aligned ECG beats with 

matching QRS complexes in Matlab. A 3×3 network of 

clusters was generated with each neuron containing a set 

of matched beats. Figure 1 shows an example of generating 

QRS-matched beat clusters corresponding to the neurons 

in the SOM network. Figure 2(a) shows the topology of 

SOM network of neurons (sample hits) in the same 

example with the number of matched beats on each neuron. 

Figure 2(b) shows the SOM neighbor distance map of the 

example where the direct neighbor connections are shown 

by lines between neurons. The color of the patches 

containing the connecting lines is proportional to the 

weight vector distance between adjacent neurons. Darker 

colors represent larger distances. Groups of similar 

neurons (beat clusters) are bonded by light patches, 

separated by darker patches from other groups of neurons. 

Dominant cluster (with highest number of beats) was 

merged with other clusters if high correlation was 

measured between their average beats. In Figures 1 and 

2(a), cluster 5 had the highest number of beats and high 

correlation with clusters 3, 6, 7, 8, and 9. The method was 

applied to remaining clusters to find the secondary 

dominant cluster (cluster 1 in this example). The merged 

dominant cluster with non-ectopic rhythm was selected for 

further analysis. Using this approach, artifact-corrupted 

and abnormal beats were automatically excluded from the 

dominant cluster. Figure 3 shows (a) the dominant and (b) 

the subordinate average beats. 
 

2.1.2. P-wave Detection 

Fiducial points of the dominant average beat were 

measured by morphological techniques after smoothing 

slightly by a moving average filter. R-wave peak was 

already found by our QRS detector. Q peak (if available) 

and Qo (QRS onset) were determined by maximum vertical 

distance method. Pp (P-wave peak), if available, was then 

identified as the positive or negative prominent peak in a 

search window, then Po and Pe (P-wave onset and end, 

respectively) were found by maximum vertical distance 

method with Pp at one end of the search line. Figure 4 

shows an example of our P-wave detection method. 

 
Figure 1. An example of clustering the beats by QRS 

matching and merging the highly-correlated cluster.  

  
    (a)            (b) 

Figure 2. (a) Network topology, and (b) SOM neighbor 

distance map for the clusters in the example of Figure 1. 

 

  
        (a)               (b) 

Figure 3. (a) Dominant average beat after merging similar 

clusters, (b) subordinate average beat from a single PVC. 
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Figure 4. An example of our P-wave detection method. 

 

To find a peak in each beat in the dominant cluster, the 

same technique is applied, however, for an existing P-wave 

in the dominant average beat, the algorithm will apply a 

smaller peak search window which helps to exclude the 

potentially false P-waves.  
 

2.1.3. Feature Extraction 

The atrial activity features are associated with presence 

or absence of consistent P-waves in 30-sec segments of 

ECG recording while the ventricular response features 

define irregularity of the beats.  

Atrial activity features (n=12): 

• Mean and standard deviation of the following 

measures within the segment: PR interval, P-wave 

duration, P-wave onset-peak duration, P-wave 

amplitude (peak-onset) 

• Number of P-waves detected in segment 

• Presence/absence of potential P-wave in average beat 

• Mean and standard deviation of the correlation of P-

waves in average beat with each beat in the segment. 

Ventricular response features (n=12): 

• Median, standard deviation, sample entropy, and 

Shannon entropy of each of the following measures: 

NN intervals, absolute value of the differences of the 

NN intervals, absolute value of the second differences 

of the NN intervals. 
 

2.1.4. Classifier 

Classification was performed between AF records and 

non-AF records including normal sinus rhythm (NSR) and 

some P-wave-bearing arrhythmias such as sinus 

bradycardia (SB), LBBB, RBBB, and ectopic rhythms 

(bigeminy and trigeminy) with normal beats used in the 

feature extraction. 

We designed a decision tree ensemble classifier with 

bootstrap aggregation (bagging) with 50 decision trees. 

Positive event was the AF rhythm detection in segments. 

Each rhythm class in each database was randomly split into 

80% training data and 20% test data. We used 5-fold cross-

validation for performance evaluation of the training data. 

Feature importance was evaluated in the training data. 
 

2.2. Database 

Our algorithm was tested on several datasets with 

annotated intervals for some cardiac rhythms. Each 30-sec 

segment in these intervals was resampled to 1000 Hz. Only 

the first lead was used in a multi-lead record.  

The first dataset was PhysioNet MIT-BIH Arrhythmia 

database [13,14] including long recordings from 48 

patients, originally sampled at 360 Hz. The second dataset 

was the European ST-T Database [15,16], collected from 

79 ambulatory patients with a sample rate of 250 Hz. The 

third dataset was the AHA database with 154 recordings 

recorded at 250 Hz [17]. The fourth dataset was the 

PhysioNet/CinC Challenge 2017 training dataset [18] 

collected from AliveCor ECG recording devices, 

consisting of 8,528 ECG recordings from 9 to 60 seconds 

in length at the original sample rate of 300 Hz. We 

excluded the ‘others’ and ‘noisy’ classes of the challenge 

dataset as they did not fit in our AF/non-AF classification. 

Table 1 shows the number of segments in each rhythm 

class for all datasets.  
 

Table 1. Number of the 30-sec segments for each 

annotated rhythm in the datasets 
 Dataset 

Rhythm 
MIT-

BIH 
European AHA 

CinC 

2017 

AF 223 28 - 744 

N
o

n
-A

F
 

SR 1,577 - - 4,967 

A
rrh

y
th

m
ia

 

SB 60 29 - - 

LBBB 15 - - - 

RBBB 5 - - - 

E
cto

p
ic

 

Bigeminy 26 1 342 - 

Trigeminy 12 2 108 - 

 

3. Results 

Different combinations of rhythm classes and datasets 

were tested using our AF/non-AF classifier. Training 

performance was evaluated by a 5-fold cross-validation on 

80% of all data, while test performance was measured on 

the remaining 20%. Table 2 shows the training and test 

classifier performance for the combination of MIT-BIH, 

European, and AHA datasets, versus the CinC challenge 

2017 dataset, as well as all datasets combined. 

Assessment of the important features shows that in the 

CinC challenge 2017 dataset, ventricular response features 

were more important, leading with the Shannon entropy of 

the differences of NN intervals. Atrial activity features 

were more important in the group of the other three 

datasets with P-wave amplitude as the most important 

feature. Shannon entropy of differences of the NN intervals 
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was the most important feature in classification of all 

datasets combined.  

Table 2. AF/non-AF classifier performance. 

Datasets 
SE 

(%) 

SP 

(%) 

PPV 

(%) 

NPV 

(%) 

F1 

NonAF 

(%) 

F1 

AF 

(%) 

F1 

Total 

(%) 

Acc 

(%) 

MIT-BIH+ 

European+ 

AHA 

Train. 98.0 99.9 99.0 99.8 99.8 98.5 99.2 99.7 

Test 93.9 100.0 100.0 99.3 99.7 96.8 98.3 99.4 

CinC 

Challenge 

2017 

Train. 88.4 99.0 93.1 98.3 98.7 90.7 94.7 97.6 

Test 87.2 98.7 90.9 98.1 98.4 89.0 93.7 97.2 

All datasets 
Train. 91.4 99.3 94.7 98.8 99.0 93.0 96.0 98.3 

Test 90.4 99.2 94.2 98.7 99.0 92.2 95.6 98.2 

 

4. Discussion and Conclusions 

We performed a successful classification of AF and 

non-AF rhythms in four datasets containing AF, NSR, and 

several other arrhythmia types. Using a beat clustering 

neural network algorithm helped us to exclude the 

abnormal, dissimilar, or artifact-corrupted beats. Our P-

wave detection method found the fiducial points in all 

beats and the average beat of the dominant cluster, and 

atrial activity features were defined based on the location 

and amplitude of these points. 

We observed that the classification performance was 

lower for CinC challenge 2017 dataset versus the 

combination of other three datasets. The important features 

in the challenge dataset were also different form the other 

datasets: Ventricular response features versus atrial 

activity features, respectively. These differences could be 

due to the lower signal quality in the challenge records 

where the QRS-peak detection driving NN-interval was 

more robust than P-wave detection. 

In this work, we aimed to study the relative contribution 

of features defined by P-waves and NN-intervals. Adding 

more features would increase the AF/non-AF classification 

performance and make the classification of other 

arrhythmias possible. Also, signal quality analysis was out 

of the scope of this study. 

The rhythm classes in the datasets were unbalanced in 

number of records and biased towards the NSR rhythms. 

Addition of more records with AF and other Non-AF 

rhythm classes would result in a more robust classification. 
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