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Abstract

The strength of the Respiratory Sinus Arrhythmia (RSA)
in patients with Obstructive Sleep Apnea (OSA) might help
to understand the correlation between apnea and Cardio-
vascular Diseases (CVD). For estimating the RSA, Heart
Rate Variability (HRV) analyses can be used. The High
Frequency (HF, 0.15 Hz - 0.4 Hz) band of the power spec-
trum of the tachogram is recognized to contain the infor-
mation related to breathing. However, this assumption
might produce wrong RSA estimates, since the respira-
tory rate can occur outside the HF band. In this work,
the strength of the RSA in OSA patients with apnea asso-
ciated comorbidities was estimated using respiratory and
electrocardiogram (ECG) signals. For this, the shared fre-
quency content between respiration and HRV was charac-
terized with methods that calculate respiratory frequency
bands different to the HF. These methods were applied in a
dataset of OSA patients and apnea-associated comorbidi-
ties. Even though there were no significant differences be-
tween groups, patients with more severe apnea and comor-
bidities presented an apparently higher RSA level. This ob-
servation might illustrate the function of the RSA as a com-
pensation mechanism to reduce the workload exerted by
the heart and to compensate for an abnormal blood pres-
sure.

1. Introduction

Obstructive Sleep Apnea (OSA) is a disorder in which
patients present airflow cessations during the night. This
syndrome is estimated to affect between 9-38% of the
adults in Europe and North America [1]. In the long term,
the OSA syndrome is associated with the development of

Page 1

Cardiovascular Diseases (CVD). For this reason, explain-
ing the correlation between OSA and cardiac comorbidi-
ties is an active research topic. One of the main mecha-
nisms affected in OSA patients is the breathing, which is
widely accepted to modulate the Heart Rate (HR) activ-
ity through a phenomena called the Respiratory Sinus Ar-
rhythmia (RSA). Hence, the estimation of the strength of
this modulation might serve to evaluate OSA patients and
their cardiovascular status.

The RSA is observed as an increased HR during inspira-
tion and a decreased HR during expiration. Despite of be-
ing known since 1733, the physiological role of the RSA
remains under debate. The most widely accepted hypoth-
esis suggests that the RSA matches perfusion and ventila-
tion, improving the efficiency of the pulmonary circulation
and gas exchange. Nevertheless, this hypothesis still needs
to be proven [2]. One recent study suggests that the RSA is
a mechanism to reduce the workload exerted by the heart
[3] and a second study gives evidence of the function of
RSA on the regulation of the blood pressure (BP) [4].
Currently, it is widely accepted that the respiratory infor-
mation can be found in the High Frequency (HF, 0.15 Hz
- 0.4 Hz) band of the Power Spectral Density (PSD) of
the Heart Rate Variability (HRV) [5]. However, the res-
piratory rate might occur at frequencies different to this
range. As a result, the quantification of the RSA using
the total power in the HF band might produce wrong esti-
mates of this modulation [6]. Therefore, this work aims to
investigate the RSA in patients with different OSA levels
and apnea associated comorbidities using frequency bands
other than the HF. For this, the -3 dB Bandwidth (BW)
and the Occupied 95% Bandwidth (OBW) of the respira-
tory signals were used to define the frequency components
produced by the respiratory modulation on the HRV. The
RSA was estimated based on two different HR represen-
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tations [10]. These methods were applied in two datasets
of patients with different severities of apnea and apnea-
associated comorbidities. The results were compared with
the standard normalized HF power (HFn). [5].

2. Materials

Two datasets with electrocardiogram (ECG) and tho-
racic Respiratory Inductive Plethysmography (RIP) signals
were used. The first dataset consists of 110 Polysomnog-
raphy (PSG) recordings of patients with different severi-
ties of OSA and associated comorbidities. The ECG and
RIP were acquired with a sampling frequency of 500 Hz.
The apneas and sleep stages were annotated by sleep spe-
cialists according to the AASM 2012 scoring rules [7].
The OSA severity was assessed with the Apnea Hypop-
nea Index (AHI), i.e. average number of apneic events per
hour of sleep. 100 patients were matched for age, gen-
der and Body Mass Index (BMI). In this subgroup, there
were 50 OSA patients (AHI>15) without comorbidities
and 50 OSA patients (AHI>15) with comorbidities (hy-
perlipidemia: 49, hypertension: 40, diabetes: 5, myocar-
dial infarction: 4, stroke: 2). 33 of the 50 patients with
comorbidities were taking beta-blockers at the moment of
the recordings. The remaining 10 subjects (AHI<15) did
not present comorbidities. This dataset will be referred to
as the UZ Leuven dataset.

The second dataset contains signals from the Sleep Heart
Health Study (SHHS) [8]. In total, 5793 PSG recordings
were available. 100 recordings from volunteers with an
AHI lower than 5 and without complaints related to apnea
were selected (50 with cardiac problems and 50 healthy
subjects). The sleep stages, arousals, oxygen desaturations
and respiratory events were manually annotated by sleep
specialists. To match the AASM 2012 rules, the AHI was
computed taking into account all apneas and hypopneas
with arousals or oxygen desaturations of at least 3%. The
ECG was sampled at 125 Hz and the RIP at 10 Hz. These
recordings will be referred to as the SHHS dataset. The
demographics of both datasets are summarized in Table 1.

3. Methods

3.1. Preprocessing and segment extraction

The signals in the SHHS dataset were first up-sampled
to 500 Hz with a cubic spline interpolation. Moreover, the
respiratory signals in both datasets were bandpass filtered
(0.05 Hz - 1 Hz) twice in forward and reverse directions
to remove the baseline and high frequency artifacts with a
zero phase distortion. Afterwards, the R-peaks in the ECG
signals of both datasets were detected with the version of
the Pan-Tompkins algorithm proposed in [9]. Next, the
detected peaks were visually corrected for miss-detections

Table 1. Demographics of the used datasets

Dataset N Age BM2I AHI Sex
Years Ke/m Events/h
47.34+10.6 29.34+4.6 37.8423.8 M: 82

UZ Leuven | 110
(25.932.8.,20.7-447) (2145325, 18111.4)  W: 28

29.3+4.4 29+1.3 M:78
(1.86-4.01 , 0-4.9) W: 22
The age, BMI and AHI are given as the mean values + the standard
deviation. Below are the ranges given as (25" percentile - 75"
percentile, minimums - maximums)

(38-55 , 26-68)

50.4+7.8

(44-55 , 39-66)

SHHS 100

(25.7-32.3,21.2-46.8)

and ectopic beats. Subsequently, these R-peaks were used
to generate two hearth rhythm representations: a signal
dr R obtained after applying a cubic spline interpolation to
the RR intervals series, and a Heart Rate (HR) signal dgr
generated with the Integral Pulse Frequency Modulation
(IPFM) model as described in [10]. Both representations
were computed with a sampling frequency of 4 Hz. Fi-
nally, the RIP signals were also re-sampled to 4 Hz.

After preprocessing, epochs of 5 minutes with 50%
overlap were extracted. From these, only non-Rapid Eye
Movement (NREM) segments without apneas were se-
lected. 1 minute after the annotated offset was used as the
beginning of the segments in order to eliminate possible bi-
ases generated by the recovery period after an apneic event
[11]. Finally, segments contaminated with artifacts or con-
taining very irregular respirations were visually identified
and removed from the analysis. As a result, a different
number of segments was available for each patient and pa-
tients with less than 5 usable segments were discarded (8
patients from UZ Leuven and 22 patients from SHHS).

3.2. RSA quantification

Firstly, the PSDs of the RIP, dgr and dy i signals were
computed using the Welch’s method with a hamming win-
dow of 40 s with 20 s overlap. Afterwards, the RSA was
quantified as follows:

1. The PSD of the respiration was characterized by:

1.1. The frequency limits of the bandwidth at -3dB (BW)

1.2. The frequency limits of the occupied bandwidth
where the signal has 95% of the power (OBW)

2. Afterwards, the influence of the respiration on the heart
rate (i.e. RSA) was quantified as:

2.1. The power contained in the PSD of the HR repre-
sentations in the frequency bands obtained in step 1. This
power was normalized with the total power in the band be-
tween 0.04 Hz and 1 Hz. This calculation was repeated
separately for the drr and dg g signals

2.2. The mean Magnitude Squared Coherence (MSC) in
the same frequencies obtained in step 1. The MSC was
computed as described in [12]. This calculation was done
only using drp signal
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3.3. Comparison of the methods

To compare the methods, different approaches were
used. First, the relationships between age and the RSA es-
timates were evaluated with a linear regression. The R?,
R? aq; and correlation coefficients (p) were computed on
each case. In addition, the significance of the calculated p
was evaluated. These regressions were used for selection,
assuming the hypothesis that the RSA is linearly degraded
in elderly populations [13], and that good methods should
better represent this relationship. Second, the capability of
the RSA estimates to discriminate the patients according to
their conditions was assessed. For this, the boxplots of the
different groups were observed and significant differences
were analyzed using the Kruskall-Wallis test with a 95%
confidence interval.

4. Results and Discussion

Table 2 shows the computed R?, R? qj» P and p-values
for the regressions between age and the RSA estimates.
The p-values indicate that the p in this dataset are signif-
icant for all the RSA estimates. However, the p values
are below 0.6 in all cases, indicating that the correlation is
moderate negative in the best case (d r-BW). Neverthe-
less, these values are only used to compare the methods
and select the one that produces the best correlation. All
the values in the table indicate that the dyzr-BW combi-
nation better represents the degradation of RSA with age.
Here, it is important to highlight that, during the visual re-
moval of the contaminated segments, also only regular res-
pirations with a narrow band were preserved. These bands
are better captured with the BW method. It is also observed
that the HT signal obtained with the IPFM model produces
slightly better regressions. This improvement, however, is
lower than it might be expected after previous studies [14].
A reason for this result might be the lack of abundant ec-
topic beats in the signals and the visual corrections to the
R-peaks that were done during preprocessing. The bene-
fit of the IPFM model would be more visible without this
step and in patients with more ectopic beats. It is also pos-
sible that the measured respiratory rates are low. The dif-
ferences would be more significant with higher respiratory
rates, since the low pass effect is more notable in the of the
drp representation than in the dy r representation [16].

Figure 1 shows the boxplots for different groups of
patients and for the RSA estimates. Only the methods
with R? higher than 0.1 for the regression with age are
displayed. Despite of the fact that the differences be-
tween groups are not significant (p>0.05), an apparently
increased RSA estimate is shown in the boxplots for un-
healthier populations. This result might have been due
to confounding variables. Therefore, the influence of the
medication intake on the RSA estimates in the group of

Table 2. Regression statistics between the different RSA
estimates and Age

Method R2 Ri dj p p-value
dyr-BW | 0256 0251 -0.506 2.65 x 1012
drr-BW | 0240 0235 -0490 2.44 x 10712
MSC-BW | 0.097 0.092 -0312 4.40 x 1075

dir-OBW | 0.084 0078 -0290 1.52x 10~%
drpr-OBW | 0.074 0.068 -0271 3.73x10~*
MSC-OBW | 0.072 0.067 -0270 4.01 x 10~%

HFn 0.119 0.113 -0345 5.81x 106

patients with comorbidities in the UZ Leuven dataset was
checked. There were no significant differences between
the RSA estimates related to medication for the drr-BW
and HFn methods (p>0.05). However, there were signifi-
cant differences between the two groups with the drr-BW
estimate (p<0.05). In all cases, an apparently higher RSA
estimate was observed in the patients without medication.
In addition, significant differences in the distribution of the
age of the subjects in the different groups were not found
(p>0.1). Finally, it was seen that the group of patients with
AHI<15 and without comorbidities have a significantly
lower BMI compared to the other groups (p<0.005). It
was also observed that, despite of the fact that the differ-
ences were not significant, patients with higher AHI have
an apparently higher BMI in the UZ Leuven dataset. The
different tests also support the observation of an increased
RSA in unhealthier conditions.

Comparing methods for different apnea and comorbidities groups
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Figure 1. Boxplots of the RSA estimates for different apnea and co-
morbidity groups (C stands for patients with Comorbidities and NC for
patients with No Comorbidities)

The finding of an increased RSA in unhealthier subjects
contrasts to previous studies suggesting that it should be
higher in healthier populations [15]. This result might be
an evidence to support the hypothesis that the RSA serves
as a mechanism to reduce the workload in the heart [3]. In
other words, the heart in unhealthier subjects needs to work
harder to maintain the body function, and the RSA serves
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as a mechanism to compensate for this additional effort.
The group of patients in the unhealthier groups might be
reflecting an over-compensation. This interpretation could
agree with the modeling presented in [3]. Another possi-
ble explanation for the results might be the role of RSA
for stabilizing the blood flow and Blood Pressure (BP) [4].
It is possible that in subjects with hypertension (40 of the
patients with comorbidities), the RSA is over activated in
order to compensate for an abnormal BP. Finally, the con-
trol groups taken from the SHHS dataset displayed median
RSA estimates similar to some of the unhealthy groups in
the UZ Leuven Dataset. A possible explanation for this
result might be the fact that, in the SHHS dataset, the sub-
jects were volunteers. On the other hand, the UZ Leu-
ven contains signals from patients who had symptoms that
brought them to the hospital, so they cannot be completely
considered as normal.

5. Conclusions and Future Work

An apparently increased RSA estimate in patients with
OSA problems and apnea-associated comorbidities was
observed in the UZ Leuven dataset. This might be the
result of an over-compensation mechanism to reduce the
workload of the heart in patients with cardiac problems [3]
and to compensate for abnormal variations in BP [4].

The results also suggest that using the -3dB BW of the
respiration is better to characterize the degradation of the
RSA with age when a regular respiratory rate occurs.
Additional analyses including BP signals or deriving the
BP from the available signals are needed. Also, it is nec-
essary to investigate the results obtained for the SHHS
dataset, since the RSA estimates here do not match the ob-
servations in the UZ Leuven dataset. Finally, more meth-
ods to quantify the RSA will be explored.
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