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Abstract

Pulse detection during out-of-hospital cardiac arrest is
necessary to identify cardiac arrest and detect return of
spontaneous circulation. Currently, carotid pulse check-
ing and checking for signs of life are the most widespread
procedures for pulse detection, but both have been proven
inaccurate and time consuming. Automatic methods that
could be integrated in Automated External Defibrillators
(AEDs) are needed. In this study we propose a deep neu-
ral network classifier to detect pulse using exclusively the
ECG. We extracted 3914 segments of 4 s from 279 patients,
all of them with an organized rhythm. They were annotated
as pulsed rhythm or pulseless rhythm based on clinical in-
formation. A total of 2372 pulsed rhythms and 1542 pulse-
less rhythms were included in the study. To train and test
the model 3038 (223 patients) and 876 segments (56 pa-
tients) were used, respectively. The model was evaluated
in terms of Sensitivity (Se) and Specificity (Sp) for pulse
detection. The network showed a Se/Sp of 89.4%/97.2%
during training process and 91.7%/92.5% for the test set.

1. Introduction

Sudden cardiac death is one of the leading causes of
death in the industrialized world. Despite progress in dif-
ferent fields, survival rates in the out-of-hospital settings
remain low, around 10%. The detection of pulse is crucial
for the recognition of both, cardiac arrest and the Return
of Spontaneous Circulation (ROSC) [1].

Palpation of carotid has been long used to detect pulse,
but it has been proven to be inaccurate and time consum-
ing [2,3]. Current Resuscitation guidelines [1] recommend
looking for signs of life in the patient, which has not been
proven to be more accurate [4].

Several automatic methods have been proposed using
the ECG and the thoracic impedance recorded by the defib-
rillation pads [5–7]. Availability and low resolution of the

impedance signal compromise the applicability of those
methods. A more universal approach, usable in any Au-
tomated External Defibrillator (AED), is to use only the
ECG to detect pulse. This paper presents a new approach
based on a deep neural network.

Deep learning techniques showed good accuracies in
physiological signal classification tasks [8]. In this paper
we propose a novel deep network to classify an organized
ECG into pulsed rhythm (PR) or pulseless electrical activ-
ity (PEA).

2. Materials

The data used for this study were a subset of a large Out-
of-Hospital Cardiac Arrest (OHCA) database recorded by
the DFW center for resuscitation research (UTSW, Dallas).
All episodes were recorded using the Philips HeartStart
MRx device, including ECG with a sampling frequency
of 250 Hz and a resolution of 1.03µV per least significant
bit.

A total of 1015 episodes containing concurrent ECG
and impedance recordings were considered and separated
into two groups (ROSC/no-ROSC) using the ROSC and
time of ROSC (trosc) annotations made by the clinicians
in the scene. ROSC episodes had no chest compressions
or shocks after trosc. In the no-ROSC group, we discarded
patients transported to hospital and episodes with sus-
tained organized rhythms once chest compressions were
suspended, because such actions are associated with pa-
tients in ROSC.

Five second segments presenting an organized rhythm
were automatically extracted during intervals without
chest compression artifacts [9]. These segments were la-
belled as PR and PEA for classification. PR segments were
extracted in the ROSC episodes after trosc with a minimum
interval between segments of 30 s. PEA segments were
extracted in the no-ROSC group with a minimum interval
between segments of 1 s.
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Figure 1. Pulsed rhythm (PR) and Pulseless Electrical Activity (PEA) examples.

The final dataset contained 279 episodes (134 ROSC/145
no-ROSC), and a total of 3914 segments, 2372 PR and
1542 PEA. Figure 1 shows examples of PR and PEA
segments, and shows that narrower QRS complexes and
higher heart rates are associated with PR. Data were di-
vided in patient-wise training and test sets. The first one is
composed by 3038 segments from 223 patients (1871 PR
and 1167 PEA) and the second one by 876 segments from
56 patients (501 PR and 375 PEA).

3. Methods

ECG data were downsampled to 100 Hz and bandpass
filtered between 0.5-30 Hz. The analysis window was 4 s,
so 400 samples were input to the deep neural network clas-
sifier. The network was implemented using Keras with
Tensorflow backend [10, 11].

3.1. Network design

Figure 2 shows the overall scheme of the deep neural
network applied in this proposal. A total of 4 layers con-
stitute the final solution (in blue) and the extra layers were
used to train the model (in red).

The first layer adds gaussian noise (mean zero and σ =
0.03) to the input signal to avoid overfitting in the training
process.

The second layer is a convolutional layer, which applies
temporal convolution to the input data. The n-th sample
of the `-th filtered signal is obtained following the next

equation:

x`[n] = f

(
m−1∑
i=0

wi`x[n− i] + bi`

)
(1)

where f(•) is the linear rectifier and m = 3 was taken.
A total of 6 filters (` = 1, . . . , 6) were applied, and the
weigths, wil, and the biases, bil, were optimized in the
training process.

The third layer, the pooling layer, downsamples the fil-
tered signals by a ratio of 3 and a maximum criteria.

The fourth layer was a recurrent layer, used to exhibit
the temporal behaviour of the data. Gate Recurrent Unit
(GRU) is a simpler version of Long Short-Term Memory
(LSTM), which was designed to learn long-term depen-
dencies [12], but its accuracy is similar [13]. In our so-
lution two GRU layers were applied, backwards and for-
wards, of 10 units each.

The final stage, includes a single neuron as classification
stage with the sigmoid as activation function. The output,
y, is the likelihood of the segment being PR.

In the training process we adopted some methods to
avoid overfitting. Besides adding gaussian noise, dropout
layers were added between third and fourth layer and be-
tween the last two layers. These kind of layers drops out
units under a certain probability [14], shown between lay-
ers in Figure 2. According to [14], when using dropout
probabilities it is specially useful to constrain the norm of
the weight vector at each layer, i.e. the layers are optimized
under the constraint ||w|| < γ. In our solution γ = 2 and
the constraint was applied to convolutional and recurrent
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Figure 2. Overall architecture of the deep learning solution

layers. All weights were initialized using Xavier normal
distribution and we used binary cross-entropy as loss func-
tion to optimize the network. All patients were weighted
equally to compute the loss function and we used the RM-
Sprop optimizer. Finally, training data were shuffled at the
beginning of each epoch to change the batches. The batch
size was set to 4 and the number of epochs was 200.

3.2. Performance metrics

The unweighted accuracy (UAcc) of the network pro-
posed was evaluated for the training and the test set at each
epoch in order to analyse the convergence of the network.

The overall performance of the method was given in
terms of Sensitivity (Se), proportion of correctly classi-
fied PRs; Specificity (Sp), proportion of correctly classi-
fied PEAs and Balanced Accuracy (BAC), the mean value
of Se and Sp. To compute the performance metrics each
patient was weighted equally.

4. Results

Figure 3 shows the unweighted accuracy of the network
at each epoch for the training and testing sets. UAcc con-
verges for epoch 100 with a difference below 4% in the
end between training and test sets.

At the final epoch, the network showed a Se/Sp of
89.4%/97.2% for the training set and 91.7%/92.5% for the
test set. A BAC reduction of 1.2% was measured for the
test set.

5. Discussion and conclusions

Pulse detection remains challenging during OHCA for
both experts and laypeople, so there is a clear need of accu-
rate automatic methods. This is, for the best of our knowl-
edge, the first study that proposes using a deep learning
approach to detect pulse using only the ECG signal. This
allows the universal use of the algorithm, as recording the
ECG signal is necessary to analyse the patient’s rhythm.

Our solution is based only in 4 layers, and several regu-
larization techniques (adding gaussian noise, constraining
the weights and dropout) were used to avoid overfitting.
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Figure 3. Unweighted accuracy of the network at each
epoch of the training process.

Figure 3 shows the UAcc of the training and test sets per
epoch. UAcc of the training set improves along epochs,
but the test set’s UAcc does not improve from epoch 100
to the end. However, it does not fall, showing that the
adopted regularization techniques were good enough. We
also trained and tested the network without regularization
techniques, and achieved a Se/Sp of 98.7%/97.0% dur-
ing training, but 94.6%/87.8% for the test set. The dif-
ference in BAC is 6.7 points, well above from 1.2 points
achieved using regularization techniques. Further adjust-
ment of the regularization parameters, using data augmen-
tation and more data could further reduce the gap between
training and test performances.

The algorithm showed a Se/Sp of 91.7%/92.5% respec-
tively. Those scores are similar to other solutions that re-
quire both ECG and impedance [5, 6]. Our solution based
exclusively on the ECG permits the universal use of the
algorithm in any AED.
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