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Abstract

In this work, we propose to study the progressive fetal
response along the fetal heart rate (FHR) signal by using
empirical mode decomposition and time-varying spectral-
based analysis. The main idea is to investigate if a par-
ticular FHR signal episode in the time-domain reflects dy-
namical changes in the frequency-domain that can help to
assess the fetal condition. Results show that the spectral
components associated with the neural sympathetic fetal
reactivity exhibit significant spectral energy differences be-
tween normal and acidotic fetuses.

1. Introduction

Timely identification of fetuses with the risk of asphyxia
during labor enables clinicians to prevent potential adverse
outcomes and without excessive intervention [1]. This
procedure is usually based on the analysis of fetal heart
rate (FHR) and uterine contraction (UC) signals obtained
through the Cardiotocograph (CTG). However, the CTG
analysis is difficult because it involves the interpretation of
highly complex signals, whose methodology has shown to
lack objectivity and poor reproducibility [1].

In order to improve the CTG interpretation, different
medical guidelines [2] and computer-based support (CS)
[3] have been proposed. However, concerning to those
methods, guidelines lack consensus in several aspects and
it has not been proven that CS improve the results so far.

On the other hand, recent literature indicates that each
fetus has its own control and that its condition depends on
how the fetus is compensating itself over time [4]. Like-
wise, experienced clinicians attempt to consider this evo-
lution when interpreting CTGs by considering a specific
FHR characteristic along a temporal window [2]. Under
this concept, it seems that methods that do not consider
these characteristics could not be appropriated for a correct
analysis, since the interpretation is based just on a snapshot
of the complete nonstationary input-output process [5].

In this context, several approaches based on time-varying
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signal processing techniques have been proposed [1]
such as Short Time Fourier Transform, quadratic
time-frequency distributions or time-varying autoregres-
sive (AR) modeling. Likewise, Continuous and Discrete
Wavelets Transform techniques have been proposed in or-
der to analyze the transient nature of the UC excitation.
However, most of them are mainly focused on fetal reac-
tivity as a response to a UC, without taking into account the
progressive spectral variations from one event to another.

In this work, we propose to analyze such progres-
sive characteristics along the FHR signal by using the
complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) method [6] and parametric
time-varying spectral-based analysis. The main idea is to
study the spectral progressive FHR dynamics that can help
to assess the fetal condition.

Results show that the CEEMDAN mode associated
with the neural sympathetic fetal reactivity band (0.03 —
0.15Hz) exhibits significant spectral energy differences (p-
value< 0.02) between normal and acidotic cases.

2. Methodology

The main idea behind the proposed method is to study
spectral progressive variations present in the FHR signal
that can be related to the fetal condition. For this purpose,
we propose a modal spectral-based analysis performed by
using CEEMDAN [6] and time-varying AR modeling.

2.1. FHR signal pre-processing

The FHR and UC signals acquisition is commonly sub-
jected to different types of artifacts such as loss of data and
outliers. Hence, following [7], FHR signal values outside
of range between 50bpm and 200bpm are removed, and
then loss of data less than 75s length are interpolated by
using a Hermite spline method. Likewise, UC loss of data
less than 25s are interpolated and filtered by a moving av-
erage filter of 15s windows length. This filtered UC signal
is using for the decelerations identification.
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In the sequel, the preprocesed FHR and UC signals are
denoted simply as the FHR and UC signal, respectively.

2.2. Decelerations identification

The decelerations identification is performed following
[8]. In a first step, the evident segments are recognized
by a floating-line and a progressive baseline, which are
computed by a nonlinear median filter [9] over a sliding
window of 10s and 400s length, respectively [8].

In a second step, the segments that were not recognized
as evident decelerations, but they are certainly a response
due to a UC, are identified. Those episodes (UC-seg) are
identified according to the criteria defined in [10], where a
UC-seg starts 7s before the UC apex and ends 50s after it.

2.3. FHR signal decomposition

This work aims to study the spectral characteristics as-
sociated with the neural sympathetic fetal reactivity mod-
ulated by the autonomic nervous system (ANS), which
mainly lie in the frequency band between 0.03 and 0.15H z
[1]. Hence, firstly it is necessary to attenuate the very low
frequency (0 and 0.03 H 2), associated with the morpholog-
ical characteristics of FHR decelerations. Following [8],
this filtered FHR signal is computed by the detrending be-
tween the FHR signal and the floating-line.

For the subsequent analysis, the filtered FHR signal is
decomposed by using the CEEMDAN method [6]. It al-
lows to decompose nonlinear and non-stationary signals
into a finite number of components. Its main advantage
is that it depends on local properties of the signal itself.
In consequence, it does not require a priori information as
other methods such as wavelet and Fourier transform. For
more details of the CEEMDAN method, please refer to [6].

In the sequel, the CEEMDAN components extracted
from the FHR signal are denoted as the FHR modes.

24. Time-varying AR spectrum estimation

For the spectral analysis of each FHR mode, the
time-varying AR modeling is used, since this method of-
fers certain advantages over other standard spectral-based
methods [11]. It allows the extraction of quantitative spec-
tral parameters versus time and requires only a fraction
of the samples needed by standard techniques (e.g. Fast
Fourier transform) to obtain the same resolution.

The AR time-varying spectrum can be described by:

1
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where p is the model order and ay, are the AR parameters.
Following [10], the order p was set to 6t" and the AR co-
efficients ay(n) were computed by using a recursive least

squares algorithm with a forgetting factor set to 0.99. For
more information of AR modeling, please refer to [11].

3. Results

The analysis is performed using data extracted from the
CTU-UHB Intrapartum Cardiotocography database [12].
It contains 552 CTG recordings sampled at 4H z. Codes
have been implemented in Matlab® version 2015b.

For the evaluation, a dataset of CTG recordings was se-
lected according to their outcome parameters of pH and
BDecf values. Values of pH< 7.05 and BDecf> 12 com-
monly indicate a fetal acidosis, whereas pH values be-
tween 7.20 and 7.60 indicate a normal fetal condition [13].
Therefore, CTG recordings labeled by values of pH< 7.05
and BDecf> 12 were selected as examples of acidotic
fetuses and recordings labeled by pH> 7.35 (arbitrarily
chose from the normal range) and BDecf< 12 were se-
lected as examples of normal fetuses. Under this criteria,
60 recording were selected for the analysis, 18 correspond
to acidotic cases and 42 cases correspond to normal cases.

According to [1], the frequency band associated with
neural sympathetic fetal reactivity lie in the range between
0.03 and 0.15H z. Therefore, the FHR mode whose spec-
tral dynamics are inside this frequency range was studied.

The Fig.1 exhibits two representative examples, one for
each column. The first (left) corresponds to a normal case
and the second (right) to an acidotic case, belonging to
the recording 1189m and 1104m, respectively. The first
row shows the raw FHR signal. The second row depicts
the FHR decelerations (black), floating-line (blue) and the
progressive baseline (magenta). The third row plots the
FHR mode of interest (6'"). The fourth row exhibits the
AR spectrum computed from the FHR mode, whose val-
ues were normalized between 0 and 1 for each sample n.

In the fifth row the spectral energy (E) is plotted (values
were normalized between 0 and 100). It is calculated from
the total frequency band (0 — 2H 2) of the AR spectrum for
each sample n as described in eq. (2).

2Hz

Eln] = (Sarlf.n]) 2)
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Finally, the last row depicts the average of the E/ during
decelerations (D D) in red markers. In Fig.1(e,f,i-]) the
deceleration segments are highlighted in gray.

Results show that the analyzed cases exhibit different
spectral behavior. Both cases show important spectral dy-
namics over time, which differ between an acidotic and a
normal condition. Particularly, in the first example pre-
sented in the Fig.1 (left), the AR spectrum exhibits dif-
ferent spectral dynamical changes, whose E (Fig.1(i)) de-
scribes pronounced variations in amplitude.
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Figure 1: (a) Raw FHR signal nb. 1189m, pH= 7.36 and BDecf= 0.43; (b) Raw FHR signal nb. 1104m, pH= 6.92 and

BDecf= 23.75; (c-d) FHR signal (red), floating-line (blue), progressive baseline (magenta) and decelerations (black); (e-f)
FHR mode 6"; (g-h) time-varying AR spectrum; (i-j) spectral energy E; (k-1) EDD (red markers).

In contrast to the previous example, the acidotic
case shows a completely different spectral behavior (see
Fig.1(G)). In this case, the E does not show prominent
variations, i.e. the AR spectrum exhibits a less marked
response in the E compared to the first case. Likewise, its
FE level is considerably lower compared to the first case.

This phenomenon can be also observed in the EDD,
which is plotted in the last row of Fig.1. Here, we can
clearly observe that the EDD is in general higher for the
normal than the acidotic case. Likewise, for the acidotic
case the ED D shows a more stable behavior from one de-
celeration to another compared to the normal case.

Likely, this phenomenon can be related to the fetal con-
dition since the fetal reactivity, modulated by the sympa-
thetic ANS, increases for a normal fetus compared to an
acidotic fetus [10]. Therefore the neural sympathetic fetal
reactivity of an acidotic fetus might not reflect high activity

in the FHR signal compared with a normal fetus.

In order to prove if this phenomenon is reflected in the
other signals of the dataset, we compute two features: the
average of E/ (E) and the average of EDD (EDD). Then
a Wilcoxon rank-sum test was employed to evaluate if
these features show a statistically significant difference be-
tween the normal and acidotic cases, performed under the
hypothesis that the median values of the features differ be-
tween normal and acidotic cases.

The obtained results are presented in Table 1, whose
boxplots are exhibit in Fig.2. Here, we can observe that the
median values of E are 3.45 and 2.24 and the median val-
ues of EDD are 3.62 and 2.50 for the normal and acidotic
cases, respectively. From the statistical test, the values of
both features were significantly higher (p-value< 0.02) for
the group of normal cases compared to the acidotic cases.
As a result, the proposed hypothesis has been proven.
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Table 1: Analysis of extracted spectral features

Normal Acidotic Significance
cases cases (p-value)
E 3.45[2.56 — 6.61]  2.24[2.07 — 3.24] < 0.02
EDD 3.62[2.54 — 6.56] 2.50[1.80 — 3.37] < 0.02

s
{ ]
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normal acidotic normal acidotic

Figure 2: Boxplots for normal and acidotic cases of the
selected dataset; (a) feature E; (b) feature £ DD; median
of the data (red). The borders of the box are the 25¢th and
75th percentiles of the data and red crosses are the outliers.

4. Conclusion

The obtained results showed that CEEMDAN method
in combination with the time-varying AR modeling can
be a powerful methodology for the CTG signals assess-
ment. In fact, the analysis of the spectral components
associated with the neural sympathetic fetal reactivity
(0.03 — 0.15Hz) allowed to recognize significant differ-
ences (p-value< 0.02) in the E between normal and aci-
dotic fetuses, represented by the features E and EDD.

The EDD from one FHR deceleration to another over
time, strongly differ between a normal and an acidotic
case, presenting higher variations for a normal case. Con-
sidering that FHR decelerations are one of the most com-
plex patterns to assess, these results open perspectives for
the characterization of them based on this methodology, in
order to improve the interpretation and subsequent classi-
fication of non-reassuring CTG recordings.

As a future step, beside the proposed features, we pro-
pose to extract a greater number of them and evaluate their
performance by an automatic CTG classification.
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