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Abstract

While the aortic valve geometry is highly patient-
specific, state-of-the-art prostheses are not aiming at re-
producing this individual geometry. One challenge in man-
ufacturing personalized prostheses is the mapping from the
curved 3D shape extracted from imaging modalities to the
planar 2D leaflet shape that is cut out of the fabrication
material. To address this problem, a database was set up
to evaluate valve leaflet shape models. First, 3D ultra-
sound images of ex-vivo porcine valves were acquired un-
der physiologically realistic pressure to extract geometric
key parameters describing the individual geometry. In a
second step, the valves’ leaflets were cut out, spread on
an illuminated plate and photographed in this state. From
these images, the leaflet shape was extracted using edge
detection. This database allows the derivation of a data-
driven leaflet model utilizing machine learning, i.e. non-
linear Support Vector Regression (SVR). Additionally, an
existing geometric leaflet shape model was evaluated on
the dataset. The data-driven approach provided an accept-
able leaflet shape estimation and clearly outperformed the
existing model. This presents an important step towards
personalized aortic valve prostheses.

1. Introduction

The geometry of the aortic valve is highly patient-
specific [1]. The shape of each of the three leaflets depends
on the individual geometry of the aortic root as well as the
shape of the other two leaflets. Studies indicate that even
small changes in this geometry have a significant influence
on the whole blood cycle, up to an increased short-term
mortality [2].However, state-of-the-art aortic valve pros-
theses are hardly capable of reproducing this individual
valve shape. While mechanical prosthesis are shaped com-
pletely differently, biological aortic valve prostheses are
always symmetric, i.e. the three leaflets are equally sized
and shaped [3]. A personalization of the prosthesis ge-
ometry could improve the patient’s outcome. One prob-
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lem is to estimate the planar shape of the single leaflets.
Information about the original valve geometry can only
be assessed using medical imaging. In these images, the
leaflets appear in a curved three-dimensional shape, while
the manufacturing process requires a planar shape descrip-
tion of the leaflets to cut them out of the fabrication ma-
terial. Accordingly, a model mapping from key features
of the curved valve geometry to the planar leaflet shape is
required. In combination with a personalized stent, such a
model would present a straight-forward approach for per-
sonalized valve prosthesis manufaction. The derivation of
this model can be performed data-driven using machine
learning methods. Like this, systematical errors intro-
duced through handcrafted, geometrical modeling can be
reduced. In this work, we present a method to develop and
evaluate such a model. It is based on the results of our pre-
liminary study [4].

For this purpose, we set up a sufficient data base and de-
rived a predictive model from it completely data-driven
utilizing Support Vector Regression. We examined differ-
ent key feature descriptors of the 3D aortic valve geometry
and evaluated the resulting models on the data set. Addi-
tionally, we evaluated an existing geometric leaflet shape
model on the data base and compared the results to the
data-driven approach.

2. Material and Methods

The aim of this work is the derivation of a model map-
ping from the curved 3D valve geometry to the planar
shape of the single leaflets. Hence, a sufficient data base
integrates both states of the valve leaflets. Thus, we set
up such a data base consisting of 10 ex-vivo porcine aortic
roots. At first, volumetric ultrasound images of the aortic
root were taken. Then, the single leaflets were cut out and
photographed. Thus, the data base consists of correspond-
ing information about each valve’s geometry as well as its
leaflets” shapes. Based on this data, a mapping was derived
utilizing Support Vector Regression.
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Figure 1. (a) Porcine aortic valve ex-vivo under pressure,
seen from below. (b) Ultrasound image of aortic valve at
coaptation plane. (c) Geometric key features of the right-
coronary (RC), left-coronary (LC) and non-coronary (NC)
leaflets extracted from the three commissure points Py, P
and P5 and the coaptation point P;. The features are the
commissure distances K, Ko and K3 as well as the free
leaflet edges S, S2 and S3. The image is a projection of
the 3D root to the x-y-plane. (d) General description of the
ith leaflet.

2.1. Curved Shape Acquisition

The gold standard for aortic valve imaging is trans-
esophageal echocardiography (TEE). Hence, volumetric
ultrasound images of the aortic root under diastolic pres-
sure were taken, i.e. in the closed state, mimicking a TEE
examination [5] (see Fig. 2 (a,b)). In these images, four
anatomical landmarks were manually identified, being the
three commissure points P, P>, and P5 as well as the
coaptation point P, (see Fig. 2 (c)). Previous studies have
shown that this simple geometric description allows for a
reasonable representation of the individual geometry [6].
Based on these landmarks, different geometric key features
were extracted, namely the commissure distances K7, Ko
and K3 as well as the leaflets’ free edge lengths .S, S5 and
S3 (see Fig. 2 (¢)).

2.2.  Planar Shape Acquisition

After volumetric image acquisition, the single leaflets
were cut out of the root. They were spread on an illu-
minated plate and a photograph was taken. The back-
illumination with blue light increased the contrast through
absorption in the prominent collagen fibres. Attention has

been paid to the preservation of the natural shape with min-
imal deformation. The resolution of the photograph was
27.2%. In these images, the leaflet contour line was
identified automatically (see Fig. 3). The image was con-
verted to grayscale intensity values and inverted. Then,
the leaflet was segmented using thresholding, followed by
a closing operation (circular structural element with radius
of 30 pixels). Finally, the leaflet contour was extracted us-
ing the Canny algorithm for edge detection. For a more
general description of the contour line, it was transformed
to polar coordinates with its origin in the nodulus arantius,
i.e. the point on the leaflet’s free edge where it touches
both other leaflets (see Fig. 2 (c)).

2.3. Data-Driven Model Derivation

The data base described above allows for the derivation
of an intelligent system to estimate the mapping of the ge-
ometric key features extracted from the ultrasound images
to the leaflet contour shape. Thus, the aim is to find a map-
ping F; for each leaflet i € {1,2, 3} with

Fi(¢,z) — p, (D

where ¢ is the angle of the polar contour coordi-
nate system, p is the radius in this system and x €
{X1(i), X2(i), X5(4), X4(i)} is a vector containing a set
of individual geometric key features extracted from the ul-
trasound images. Thus, the leaflet contour line can be es-
timated for a discretized grid of angles depending on the
curved valve shape represented by z. The parameter ¢ is
the leaflet index and indicates whether the right-coronary
(¢ = 1), non-coronary (¢ = 2) or left-coronary (i = 3)
leaflet shape is predicted. In this study, four different sets
of key feature descriptions were examined to analyse the
influence of different features on the problem of personal-
ization. The new features S; and K; were defined as

Sy =851 + 52+ S3

)
K, =K, + Ko + K.

S; is the sum over all free edge lengths while K is the
sum over the commissure distances. Hence, these new fea-
tures allow an estimation of the valve’s overall size. By
division through them, a feature can be scaled to this size
approximation. Accordingly, the four examined sets of ge-
ometric key features were defined as
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Figure 2. Planar leaflet shape extraction. (a) Inverted ab-
sorption image of leaflet. (b) Extracted contour line using
Canny edge detection after segmentation. (c) Contour de-
scription in polar coordinates.
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where 7 is the leaflet index, K; is this leaflet’s commis-
sure distance and 6(4, j), j € {1,2}, is the jth free edge
length of the leaflet ¢ (see Fig. 2 (d)).

The four key feature descriptions differ in their com-
plexity. Due to the relatively small number of samples,
low dimensional descriptions where tested. While X (4)
only takes one of the leaflet’s free edge lengths into ac-
count, X»(7) considers both free edge lengths to ensure a
better representation of the leaflets” shearing. By division
through S;, the key features were scaled according to an
estimate of the valve’s size. In addition, the commissure
distance of the leaflet is included in X3(¢) and X4(7) to
measure the general span of the leaflet. In this case, the
absolute distance (X3()) as well as the distance scaled to
the sum of commissure distances (X4(¢)) was examined.
The mapping F; was estimated using Support Vector Re-
gression (SVR) [7] with a radial basis function kernel, uti-
lizing the LIBSVM library [8]. To ensure that asymmetric
geometries can be estimated, three different models were
trained predicting the shape of one specific leaflet, i.e. the
left-coronary leaflet, the right-coronary leaflet and the non-
coronary leaflet, respectively. The SVR parameters C' and
e as well as the kernel parameter v were optimized using
a grid search method (C' € [0.01,1000],¢ € [0.01,1],~ €
[1,1100], discretization: 100 steps, respectively). 10-fold-
crossvalidation was performed, i.e. the model was trained
on nine valves and evaluated on the last one by predicting
its shape and comparing it to the ground truth.
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Figure 3. Prediction accuracy of the data-driven model for
the four different feature descriptions.

24. Comparison to Existing Model

For a better interpretation of the model accuracy, the
geometric leaflet shape model of Sievers et al. [9] was
evaluated to analyse its capability of reproducing person-
alized leaflet shapes. In this model, while the contour line
is modelled by adding three circle sections with differ-
ent radii [9]. The ratio of these radii was derived empir-
ically. The model creates symmetric leaflets, hence each
leaflet is meant to span around the same compartment of
the aortic root, which is one third of the root circum-
ference. To reach personalization, the radii were scaled
according to the commissure distance K; of the specific
leaflet i, ¢ € 1,2, 3. This leads to three individually shaped
leaflets that span the entire circumference.

3. Results and Discussion

The data-driven model was evaluated for the four differ-
ent key feature descriptions on all ten heart valves for each
leaflet, respectively, resulting in 30 predictions per model.
Fig. 4 shows the average symmetric contour distance for
each examined feature space. The scaling of the features to
measures of the valve’s size (X3, X4) clearly improves the
prediction accuracy. A combined geometry description us-
ing the leaflets’ free edge lengths and the commissure dis-
tance in this scaled representation (X4) provided the small-
est errors. Therefore, the following predictions were based
on this feature space. Additionally, the data-driven model
with the optimal feature space as well as the model of Siev-
ers et al. were evaluated on the data set. Table 1 shows the
prediction accuracy of both models for all three leaflets as
well as the mean prediction accuracy. While the error of
Sievers et al.’s approach lies above 2 mm, the data-driven
model can predict each leaflet’s geometry with an error of
less than 1 mm.

The results show that the geomtric model of Sievers et
al. is not capable of reproducing patient-specific leaflet
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shapes. This indicates that current models for heart valve
prosthesis are still far from optimal. In contrast, the data-
driven model provides good approximations and clearly
outperforms the existing model. Hence, it could be shown
that estimating the individual leaflet shape based on ultra-
sound image data is possible. Additionally, a feasible rep-
resentation of the valve’s shape based on four anatomical
landmarks was found and it could be shown that personal-
ized estimation of the leaflet shapes can be performed even
based on this simple geometric description.

In both approaches, the non-coronary leaflet can be
modelled with the highest accuracy. This could be due
to the fact that this leaflet is more likely to be symmetric,
while the right- and left-coronary leaflets are more likely to
appear sheared, i.e. the nodulus does not lie in the middle
of the leaflet’s free edge.

Due to several manual interaction steps, it is possible
that the data set is biased. The first possible reason could
be inaccuracies in the manual landmark identification in
the ultrasound volume images, though the results indicate
that the manual geometry description worked accurately.
A second source of error in the data set is due to the man-
ual spreading of the single leaflets on the illuminated plate.
Positioning errors will affect the assessed leaflet contour
shape. Hence, the sample size should be increased to sta-
tistically minimize this error. Additionally, this bigger data
set could increase the accuracy of the learning algorithm.

Aiming for the manufacturing of personalized aortic
valve prosthesis, modelling the planar leaflet is just one
step. Additionally, a personalized model of the stent has
to be developed. Another interesting scientific question
is whether the obtained individual geometry of the valve
is pathologically changed. In this case, a direct copy of
the valve geometry would not increase the patient’s out-
come. One possibility to overcome this problem could be
an additional estimation step predicting the healthy geom-
etry based on the obtained one. A similar approach was
already tested in a comparable cardiovascular problem [6].

To the best of the author’s knowledge, this work presents
the first method to assess the planar shape of the aortic
valve leaflets based on ultrasound imaging. Based on an
expermentally collected data set, an existing method to

Table 1. Prediction accuracy of the two evaluated mod-
els for each leaflet type. All values given as the average
symmetric contour distance in mm.

Sievers et al.  Data-driven Model

Left-coronary 2.77£0.84 0.69 £0.23
Right-coronary  2.96 £0.73 0.64 £0.31
Non-coronary 2.65 £ 0.70 0.41 +0.48
Mean 2.21 £0.56 0.61 £0.33

compute valve prostheses shapes was evaluated. Further-
more, the data base allows the derivation of a completely
data-driven model using machine learning. It was shown
that this model clearly outperformed the existing model of
Sievers et al. and that acceptable prediction accuracies
were reached. The developed model makes the fabrica-
tion of personalized aortic valve prostheses possible. To
this end, TEE images of the patient can be acquired and,
based on this information, the three leaflet shapes can be
predicted using the model. In combination with a person-
alized stent model, a prosthesis can be manufactured that
mimics the original geometry of the patient’s own aortic
valve. The study shows that machine learning could be an
important step towards personalized cardiovascular pros-
theses.
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