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Abstract

Although the geometry of the aortic valve is highly
patient-specific, state-of-the-art prostheses are not capa-
ble of reproducing this individual shape. Promising re-
sults in the field of tissue engineering move the goal of the
fabrication of personalized aortic valve prostheses within
reach. However, there is no study on the degree of per-
sonalization that is needed, aiming at finding a trade-off
between the patient’s outcome and economical or logis-
tical issues. One problem in performing such a study is
the lack of a compact, unified description of the individ-
ual aortic valve shape, which is needed to perform auto-
matic pattern analysis. In this work, we present such a
description which is derived model-free and directly from
experimental data. For this purpose, we set up a suitable
data base of porcine aortic valve shapes. We used princi-
pal component analysis for dimensionality reduction and
analyzed the minimal number of values in the representa-
tion preserving all relevant information. We could show
that an accurate representation of the shape of the aortic
valve leaflets is possible with no more than 39 values. This
representation makes geometrical pattern analysis possi-
ble and presents an important step towards personalized
cardiovascular prostheses.

1. Introduction

The geometry of the aortic valve is highly patient-
specific [1]. The valve apparatus with its three leaflets
and the aortic root form a complex biomechanical system
where all geometric parameters are interdependant. Espe-
cially the size and shape of the three leaflets differs signifi-
cantly [2]. Studies indicate that even small changes of this
specific geometry can cause severe changes in the whole
blood cycle, up to an increased short-term mortality [3],
[4]. However, state-of-the-art aortic valve prostheses are
hardly capable of reproducing this individual geometry.
While mechanical prostheses are shaped completely dif-
ferently, biological prostheses are symmetric, i.e. the three
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leaflets are equally sized and shaped [5]. Due to this draw-
back, the field of tissue engineered heart valve prostheses
advanced during the last years [6]. The aim is to culti-
vate cells on an electro-spinned scaffold. By shaping the
scaffold, a personalization of the valve prosthesis is possi-
ble. Even though the possibility of personalized prosthe-
sis manufacturing seems achievable, there are no studies
on the degree of personalization that is necessary to pro-
vide an adequate prosthesis for each patient. The question
whether a perfect reconstruction of the whole valve shape
is superior compared to a specific number of generic valve
types that could be provided remains unclear. One way to
analyze this question would be to collect a data base con-
taining a significant number of aortic valve geometries, in-
cluding their leaflet shapes, and perform clustering on this
data base. Like this, possible valve types could be found
and analyzed. However, clustering in the potentially high-
dimensional data, for example imaging data, would suffer
from the effect known as the curse of dimensionality [7].
Hence, a compact representation of the individual valve
geometry, i.e. the image data, is needed to ensure a suit-
able clustering quality.

In this work, we present an approach to derive this
compact valve representation directly from acquired image
data. The method works model-free and completely data-
driven. For this purpose, we set up a suitable data base and
perform a linear decomposition of the image data using
Principal Component Analysis (PCA). We analyze the re-
construction quality of the images in dependence of the di-
mensionality of the representation. Furthermore, we eval-
uate the model performance concerning the reconstruction
of the leaflet shape and the reconstruction of its inner struc-
ture, i.e. the location of the prominent collagen fibers [8].

2. Material and Methods

Biological aortic valve prostheses can be stented or un-
stented. What both types have in common are the three
leaflets, that, in case of a personalization, should be shaped
according to the patient’s individual geometry. Hence, the
focus of this work is to describe the shape of the three
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Figure 1: Data base setup. (a) Sketch of the imaging pro-
cedure with light source (1), diffusing plate (2), leaflet (3)
and camera (4). (b) Example of raw leaflet image. The
collagen fibers are clearly visible. (c) Preprocessed leaflet
image.

leaflets in a compact way. To simplify the description, we
measure the planar shape of the leaflets. This allows data
acquisition with a high resolution, including the imaging
of the inner structure of the leaflets, which is not possible
with classical volumetric imaging modalities. Our work is
divided into three steps: The generation of a suitable data
base, the image decomposition to derive a compact rep-
resentation and the evaluation of this representation. The
single steps are described in more detail in the following
paragraphs.

2.1. Data Base Generation and Preprocess-
ing

In this initial study, we analyzed the shape of ex-vivo
porcine aortic valves. The pig hearts were bought at a
slaughterhouse, so there are no ethical concerns arising
from this study. From the whole heart, the aortic root was
extracted and opened by a vertical cut through the aorta.
This cut was positioned right in between the right-coronary
and non-coronary sinus to not damage the leaflets. After-
wards, the leaflets were cut off the aortic root wall along
the commissure lines. The leaflets were spread on an op-
tical diffusion plate (see Fig. 1 a). Special attention has
been paid to the preservation of the natural shape with min-
imal deformation. The plate was backlit with blue light
(470 nm) and we took a photograph from above (see Fig.
1 a). The diffusing plate provides homogenous illumina-
tion. The blue light is absorbed in collagen tissue, result-
ing in a high contrast of the leaflet and its inner structure.
Especially, the prominent collagen fibers on the leaflets
are clearly visible (see Fig. 1 b). This method was per-
formed on 10 porcine aortic valves, resulting in images of
30 leaflets, i.e. 10 right-coronary, 10 left-coronary and 10
non-coronary ones.

The data acquisition was followed by a preprocessing
pipeline. Aiming at a suitable, unified representation of the
leaflets, the steps of this pipeline are described in the fol-
lowing. First, the images were cropped manually to extract
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Figure 2: Outline of the proposed method. The raw image
is preprocessed and represented as a vector x. This vector
is decomposed using PCA and represented by d values in
its compact representation z. From this representation, the
image can be reconstructed.

images of the single leaflets. Each image was converted to
grayscale (ranging from 0 to 255) and inverted, resulting
in an image corresponding to a thickness profile. To avoid
noise around the leaflet, a mask was created. For this pur-
pose, the leaflet was segmented using thresholding. The
threshold was defined manually and was set to 167. Be-
cause very thin areas of the leaflet could result in holes
in this segmentation, a morphological closing was applied.
The structural element was a circle with a radius of 10 pix-
els. The resulting leaflet segmentation served as a mask
and all pixels in the image outside of the segmented re-
gion were set to 0. Like this, noise around the leaflet is cut
away while the inner structure of the leaflet is preserved.
The images were downsampled to the unified size of 119 x
70 pixels with a resolution of 0.375;;[ . Finally, the leaflet
was translated such that its center of mass lies in the center
of the image (see Fig. 1 c).

2.2. Derivation of Compact Representation

The images were represented as vectors of 119 - 70 =
8, 330 elements, respectively. The transformation between
the image space and the compact representation should
be unique in both directions, i.e. image compression as
well as image reconstruction from the compact representa-
tion should be possible. Hence, a dimensionality reduction
technique with an embedded model is needed. The Princi-
pal Component Analysis (PCA) is such a technique.

As the images in our data base are represented as vec-
tors, we could construct a data matrix X € R 8:330x30_ ywe
performed a PCA on the whole data set, receiving a map-
ping Uy depending on d, the number of principal compo-
nents taken into account for the reconstruction. This num-
ber is limited by the number of training data points, i.e. the
maximum number of principal components we can derive
from our dataset is 29, which is one less than the number
of images in our data base. Fig. 2 shows an overview of
the decomposition and the reconstruction.
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Figure 3: Reconstruction accuracy of the leaflet shape,
given as mean Jaccard coefficient (blue) and mean Haus-
dorff distance (red) over all leaflets.

2.3.  Evaluation Method

As described above, we are able to derive a compact rep-
resentation of the leaflet images using PCA. We examined
the influence of the parameter d to find a trade-off between
dimensionality reduction and reconstruction accuracy. The
aim of this analysis is twofold: First, we want to examine
whether it is possible to reconstruct the shape of the leaflet
from the compact representation. Furthermore, we want
to analyze whether the inner structure of the leaflet, i.e.
the location of the prominent collagen fibers, can be re-
constructed. As the principal components are sorted by
the percentage of variance in the data set explained by
the component, respectively, we can assume that there is a
number of dspqpe components that carry enough informa-
tion to reconstruct the leaflet shape (this also holds for a
value d f;pers). Of course, these conditions only hold if the
linear decomposition itself is sufficient for these problems.
To find the values for dspqpe and dyipers, we analyzed the
reconstruction accuracy depending on the number of prin-
cipal components included in the reconstruction. For this
purpose, we reconstructed each leaflet in the data base with
anumber of included components ranging from 1 to 30. To
analyze the capability of the model to represent the shape
of the leaflets, the images, i.e. the ground truth as well
as the reconstruction, were segmented using thresholding.
This segmentation threshold was set to 65 manually. Like
this, the inner structure of the leaflet is ignored and artifacts
around the leaflet arising from the linear composition are
removed from the reconstruction. To compare the two seg-
mentations, we used the Jaccard coefficient and the Haus-
dorff distance. Both are commonly used metrics to evalu-
ate the segmentation overlap (Jaccard coefficient) and the
distance between two contours (Hausdorff distance). Ad-
ditionally, in a second study, we applied a segmentation
threshold of 197 to the ground truth and the reconstruction
to extract the prominent collagen fibers. The treshold was
adjusted manually. By comparing these segmentaion, an
analysis of the capability of the model to represent the in-
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Figure 4: Reconstruction accuracy of the prominent col-
lagen fibers, given as mean Jaccard coefficient (blue) and
mean Hausdorff distance (red) over all leaflets.

ner structure of the leaflet was possible. Once again, the
Jaccard coefficient and the Hausdorff distance served as
error metrics.

3. Results and Discussion

We performed a PCA on the whole data set of 30
leaflet images. Fig. 3 shows the reconstruction accu-
racy of the leaflet shape. At about dspqpe = 13, the
Jaccard-coefficient saturates at a level of about 0.95, while
the Hausdorff distance is below 1 mm. The reconstruc-
tion accuracy for the collagen fibers is shown in Fig. 4.
The Jaccard-coefficient is significantly smaller than for
the shape reconstruction, while the Hausdorff distance is
higher. There is no sign of a saturation of the metrics.
Fig. 5 shows examples of reconstructed leaflet shapes and
the ground truths. In this case, the reconstruction was per-
formed using 13 principal components. The blue coloured
overlay are the segmented collagen fibers.

As described above, a saturation of the Jaccard coeffi-
cient is clearly visible for the reconstruction of the leaflet
shape. This saturation starts at about dgpqpe = 13 and in-
dicates that this number of principal components carries
enough information to describe the shape of an individual
leaflet. The Hausdorff distance falls a little with increasing
dshape, but it is below 1mm at dspape = 13 which is a
maximal distance of less than three pixels. Hence, it lies in
the range of inaccuracies of the imaging and preprocess-
ing methods. The absolute error values in the saturation
(Jaccard coefficient: about 0.95, Hausdorff distance: be-
low 1mm) are acceptable. The qualitative analysis shows
that the shape of the individual leaflets are matched very
well and that the algorithm is capable of identifying spe-
cific leaflet types, for example slender, bulbous or sheared
leaflets. Hence, a linear decomposition of the images
seems to be sufficient to describe the shape of the aortic
valve leaflets in a compact way.

The analysis of the capability of reconstructing the inner
structure did not yield appropriate results. There is no sign
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Figure 5: Example results of the reconstruction of right-
coronary leaflets with dspape = dfivers = 13, listed from
(a) to (d) with the ground truth and the reconstruction, re-
spectively. The blue coloured areas are the location of the
prominent collagen fibers.

of saturation visible, both error metrics are on a rising or
falling edge, respectively. Even the smallest error values
reached by the maximum number of d t;pe,s are poor. This
indicates that the location of the prominent collagen fibers
can not be represented with a linear decomposition tech-
nique. This might be due to the fact that the course of the
fibers seems to appear non-linear. However, the qualita-
tive analysis reveils that in some cases, a rough estimation
of the prominent fibers position on the leaflet can be made
even though an exact localization seems impossible.

Our study shows that a model-free derivation of a com-
pact representation of the aortic valves leaflet’s shape can
be performed using PCA. Hence, an analysis of the inter-
patient variability of the valve geometry as well as cluster-
ing studies to find patterns in this variability are possible.
For this purpose, we could show that the individual geom-
etry of an aortic valve, defined by the shape of its three
leaflets, can be represented by 3 - 13 = 39 values. In such
a dimensionality, clustering is possible without facing the
curse of dimensionality. However, this initial study is lim-
ited by the size of the data base. Future work should aim
on an increased data base to receive representative sample
of the valve geometry variability to enable clustering tec-
niques. Another limitation of this study is the linearity of
the image decomposition technique. Especially the inner
structure of the leaflet seems to be of non-linear nature.
Unfortunately, many methods for non-linear dimensional-
ity reduction face the problem that the reconstruction of the
image data from its compact representation is not trivial or
even impossible [9]. One possibility to find a non-linear
decomposition while the transformation is known are deep
autoencoders However, this method is not trustworthy on
a data base of this size, which in turn underlines the neces-

sity to increase it.

To the best of our knowledge, we proposed the first
model-free, data driven compact representation of the in-
dividual geometry of the aortic valve. For this purpose,
we set up a data base consisting of images of the leaflets
of 10 ex-vivo porcine aortic valves, resulting in 30 leaflet
images. We presented an image decomposition for dimen-
sionality reduction. Our analysis shows that the shape of
the aortic valve can be described with 39 values. This work
represents the basis for the analysis of the demand for per-
sonalization of aortic valve prostheses. Hence, our study is
an important step on the way towards personalized cardio-
vascular implants.
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