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Abstract

To diagnose sleep disorders, hours of sleep data from
lots of different physiological sensors have to be analyzed.
To do so, experts have to look through all the data which
is time-consuming and error-prone. Automatic detection
and classification of sleep related breathing disorders and
arousals would significantly simplify this task. This years
Physionet/CinC Challenge deals with this topic. This pa-
per examines the use of a Long Short-Term Memory net-
work for automatic arousal detection. On the test set, an
AUPRC score of 0.14 was achieved.

1. Introduction

Sleep is undoubtedly of great importance for the over-
all health and well-being. One of the well-studied sleep
disorders that cause a bad sleep are obstructive apnea syn-
dromes. Apneas are defined as sequences with a reduction
in airflow greater then 90 % of baseline [1]. Obstructive
apnea means that a respiratory effort is recorded through-
out the signal. One of the causes of obstructive apnea
syndrome are respiratory effort related arousals (RERAS).
RERAS are a breathing disorder characterized by obstruc-
tive upper airway airflow reduction, which does not meet
the criteria of apnea [1]. However, also other non-RERA,
non-apnea kind of arousals such as bruxism might lead to
the syndrome. RERAs as well as non-RERAs lead to a
shallower sleep which means less deep recuperation. As
part of the Physionet/CinC Challenge 2018 [2], a variety
of physiological signals shall be evaluated to detect those
non-apnea arousals during sleep. Amongst others, these
include electroencephalography (EEG), electrooculogra-
phy (EOG), electromyography (EMG) and electrocardio-
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graphy (ECG) data.

Since a change in various physiological parameters usu-
ally occurs in the period prior to the arousals, Long
Short-Term Memory (LSTM) networks promise to be a
good approach for automatic detection and classification
of arousals. LSTMs recently evolved as a strong algorithm
for classification of time series data. This paper presents
a concept of using a LSTM network and several features
derived from different physiological sensors for automatic
detection of RERA and non-RERA arousals.

2. Long Short-Term Memory

Learning from past information is a crucial part when
analyzing time series data. In principle, recurrent net-
works (RNNs) are able to store information over extended
time intervals. However, using the conventional Back-
Propagation Through Time (BPTT) algorithm, error sig-
nals either tend to get very big or vanish over time since
they exponentially depend on the value of the weights.
Long Short-Term Memory networks are also based on a
recurrent network structure which is designed to overcome
the before mentioned problems during training [3]. The
network can learn to bridge large time intervals while still
keeping short time lag capabilities. This can be used in
many areas like translation, text prediction and genera-
tion, natural language processing, audio and image anal-
ysis [4,5]. In general, LSTMs achieve particularly good
results in applications with time dependencies.

LSTM are built by artificial neural networks (ANNs)
as core elements. Fig. 1 shows the structure of a simple
feedforward ANN consisting of an input layer with two
neurons, a hidden layer with three neurons and an output
layer with one neuron [6]. To calculate the output y; the
weighted outputs of all previous layers are added and fed
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Figure 1. Structure of a simple ANN with summation X
and activation 1. [6]

into an activation function 1. Some often used activation
functions are the sigmoid function, tangens hyperbolicus
(tanh) or the rectified linear unit (ReLu) [7].
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Figure 2. Basic structure of a LSTM block. [8]

As already mentioned, LSTMs belong to the group of
RNNs. RNNs differ from ANNS in that they have a “hid-
den” state h, that feeds in data from the last time step ¢ — 1.
This way, RNNs can look at past data, however, they have
the disadvantages mentioned in the beginning of this chap-
ter. LSTMs solve this issue by using a so-called constant
error carousel (CEC) which corresponds to the loop of ¢,
and c;_ in Fig. 2. ¢; ist the state of the cell which allows
information to flow through easily. Errors are not exponen-
tially degraded by going through the same weights of the
RNN in each time step but remain in the CEC. This way,
errors can flow back for an almost unlimited time whereby
long-term dependencies can be modeled. What is stored in
the CEC is controlled by two operations. The forget gate
f controls which data are remembered or can be forgotten
by filtering c;—; multiplicatively. The second operations
decides, which data are remembered newly. At first all
possible entries are created by the input gate ¢, which are
then passed through the gate g and then added to f ® ¢;—1.
These operations describe how the new cell state is calcu-
lated. Since this state should be invisible from outside, c;
is filtered by an activation function and the ouput gate o.
LSTM cells can also be concatenated to understand more
complex patterns and deliver better results [9].

3. Methods

The following subsections briefly describe the recorded
polysomnographic data which provide the basis for feature
extraction and training of the designed LSTM model.

3.1. Data

The polysomnographic data provided for the challenge
consists of 1985 datasets which were split in 994 sets for
training and 989 sets for test. A variety of sensors recorded
physiological signals of subjects throughout the night, an
overview of these signals is given in the first two columns
of Tab. 1. The mean length of the recordings is 7.7h,
the sensors are sampled with 200 Hz. In each dataset
arousals and also sleep stages were labeled by profession-
als whereby these information are only available for the
training set. [2]

Table 1. Overview of recorded signals and the correspond-
ing extracted features.

Sensor Signal Features
Electroencephalography 02-M1 Power
C4-M1 Power

C3-M2 Power

F3-M2 Power

F4-M1 Power

O1-M2 Power

Electrooculography E1-M2 Peak Height, RMS
Electrocardiography ECG Heartrate
Respiratory Airflow Airflow Peak Height
Electromyography Chin1-Chin2 Onsets, RMS
Chest Onsets

Abdomen Onsets

Oxygen Saturation Sa02 Percentile, Diff.

3.2. Feature Extraction

For data reduction and compact LSTM network config-

uration a set of features is extracted. To represent a physi-
ological interpretation of the individual signals, different
features were used. A chosen window size of one fea-
ture value for one second of data reduces the resolution for
arousal detection to one second which is considered suffi-
cient. An overview of the information extracted from each
signal is given in the feature column of Tab. 1. Some of
the features are calculated with the open source biosignal
processing toolbox BioSPPy for Python [10]. A short de-
scription of the signals and their extracted values is given
in the following listing:
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Electroencephalography The main sensor for sleep stage
estimation is the EEG. One indication of arousals are sud-
den changes in the sleep phase, which can be identified by
the different frequency bands of the EEG’s signals: alpha,
beta, gamma, theta and delta. For this purpose the power
in a given frequency band from f; to fs of a discrete signal
X in frequency domain can be calculated by:

f2
Pr_g = > Xl (1)
f=h

In particular the relative power of a band is used for better
comparison, which is normed to the power of the entire
signal. For all of the given EEG signals the relative power
of each of the five bands is calculated.
Electrooculography Eye movements are an indication of
the REM phase. Therefore, by looking at the mean peak
height in a window of one second, the motion activity is to
be concluded. Additionally the root-mean-square (RMS)
value should reflect the intensity of a movement. It is cal-
culated for a given window of signal = with length N by:

@

Electrocardiography A QRS detector by P. Hamilton [11]
is used to calculate the instantaneous heart rate from the
ECG’s R-peaks, which is then smoothed by averaging 10's
windows.

Airflow One characteristic feature of RERAs is airflow re-
duction. That is why, similar to the EOG, the mean peak
height is calculated for every second of data to weight the
airflow intensity.

Electromyography Muscular activity is recorded with the
help of the EMG. Using the toolbox BioSPPy, onsets (mus-
cle activation intervals) can be derived in these signals. In
addition, the RMS value of the Chinl-Chin2 signal is de-
termined.

Sa02 Airflow restrictions are reflected in a decrease of the
oxygen saturation. Therefore, the difference of the last 10 s
is computed to determine the change in time. Also, using
the first and 99th percentile of the signal, all values below
and above the percentiles are marked.

After extraction, each of the features is weighted with
an empirically determined value in order to obtain figures
of a similar magnitude between O and 10. In this way a
total of 42 feature values were generated for every second
of data to train the model.

3.3. Classification

In search for the optimal model to detect the arousals a
configurable LSTM network was developed with Tensor-
Flow in Python [12]. The number of time steps for the

LSTM cells, hidden cells and layers of the network were
kept variable. Input of the model is a matrix with the 42
feature values for every second of data times the amount
of time steps and for training the labelled arousal informa-
tion. Arousals are assigned the value one and using the
rounded mean of a window one value per second is given.
The training can be done with variable batch sizes, tested
were sizes of 16 and 32 datasets.

A softmax layer was connected to the output of the
LSTM network to receive the probability of an arousal.
Using the RMSprop optimizer, which is a built in function
of TensorFlow, a decaying learning rate with a momentum
of 0.2 is utilized to overcome plateaus while training. Also
a dropout of 0.2 was defined to reduce overfitting.

To get an overview of the models performance while
training, metrics like the area under precision-recall curve
(AUPRC) and the area under receiver operating character-
istics (AUROC) were calculated for the current batch next
to the cross entropy which is the objective function to be
minimized.

4. Results

The LSTM network was trained with different configu-
rations. The results of three of the configurations will be
discussed briefly. They have the following parameters in-
common: two LSTM layers with each 256 hidden cells.
Two networks have 1024 time steps but were trained with
different batch sizes, model one with 16 and model two
with 32. The third model has 2048 time steps and was
trained with a batch size of 32. The performance metrics
while training were recorded and shown in Fig. 3-5. The
results calculated for each newly trained batch fluctuate,
so they were smoothed with a moving average over 100
points.

1024; 16

---1024;32 ——2048; 32

AUPRC

0 20 40 60 80 100
step (#/1000)

Figure 3. Comparison of the AUPRC of different model
configurations (time steps; batch size) with increasing
training time.

If you compare model one to model two in Fig. 3 the
second model has a higher AUPRC of 0.21 over 0.17.
Also, this model has a larger AUROC and the cross en-
tropy is with 0.25 smaller. In the end the larger batch size
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results in a small performance increase.

1024: 16 - - - 1024; 32 2048; 32
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Figure 4. Comparison of the AUROC of different model
configurations (time steps; batch size) with increasing
training time.

Model three provides the best result: Compared to the
shorter networks, temporal relationships over a longer pe-
riod of time can be observed. The AUPRC in Fig. 3 in-
creases over a long training period to about 0.45, AUROC
in Fig. 4 seems to saturate at 0.9. Additionally, the cross
entropy shown in Fig. 5 decreases to 0.18.
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Figure 5. Comparison of cross entropy of different model
configurations (time steps; batch size) with increasing
training time.

The testing of different configurations and training of
the final model had to be discontinued due to time con-
straints.

5. Conclusion

This paper presents an approach for automatic detec-
tion of non-apnea sleep related breathing arousals using a
LSTM network. Overall, 42 features from different physi-
ological sensors are obtained. A LSTM network is imple-
mented and different hyperparameters are tested. The best
performing network structure was chosen for final classifi-
cation. It consists of two LSTM cells with an input of 2048
time steps, a hidden layer size of 256 and a batch size of
32 datasets. On the test set, an AUPRC score of 0.14 was
achieved. To enhance the score, bigger hidden layers could
be used. Furthermore, more features promise to improve
the classification quality.
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