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Abstract

Fragmented QRS complexes are QRS complexes with
one or more deflections. They are known risk factors for
cardiac events in several patient groups. Detection is done
visually, which is a time-consuming process that may lead
to subjective results, limiting the clinical use of this param-
eter. This paper proposes an automated method to calcu-
late an fQRS score which gives an indication of the sever-
ity of fQRS in a channel. To compute the score, 10 fea-
tures are calculated using Phase Rectified Signal Averag-
ing and Variational Mode Decomposition and used in an
SVM classifier. The fQRS score is then used to assess the
risk of all-cause mortality in a dataset of patients with an
implanted cardioverter defibrillator. An optimal cut point
is defined for each channel to dichotomize the fQRS scores.
Bootstrapping is used to reduce variability in cutpoint se-
lection. Classification results (AUC = 0.926) show that
the fQRS score succeeds in separating signals with clear
QRS fragmentation from normal signals. Results of sur-
vival analysis on an independent test set indicate that the
fQRS score of 3 channels leads to survival curves with sta-
tistically significant differences.
This novel way of detecting and quantifying QRS fragmen-
tation is therefore a promising way to promote the clinical
usefulness of the parameter.

1. Introduction

QRS fragmentation (fQRS) is defined as QRS com-
plexes which contain one or more deflections, notches or
slurs [1]. Fragmentation can be caused by myocardial
scarring, and its presence in certain cardiac regions has
been shown to be predictive for all-cause mortality and Im-
plantable Cardioverter Defibrillator (ICD) shocks in differ-
ent patient groups [1, 2].
In clinical practice, detection is mostly done visually by

inspecting the ECG signal and binary scoring each lead.
Analysis of inter-rater agreement indicates that this can
lead to subjective results that are dependent on the ex-
perience of the raters [3]. Because scoring is done lead-
by-lead, it is furthermore a time-consuming process. The
availability of an automated method to score signals on the
presence of QRS fragmentation would therefore benefit the
practical usefulness of this parameter. Automated methods
would also lead to repeatable results over multiple datasets,
which facilitates analysing the relation between fQRS and
patient outcome in larger multicenter populations.
QRS fragmentation can have many forms since the loca-
tion and number of deflections can vary largely. Binary
scoring might therefore not be optimal since it cannot cap-
ture the differences between different types of QRS frag-
mentation. This study therefore proposes a method to auto-
matically calculate an objective fQRS score that represents
the level of QRS fragmentation in each lead, with a higher
value indicating signals with more extensive fragmenta-
tion. A previous study already used Phase Rectified Sig-
nal Averaging to detect fQRS [4], here Variational Mode
Decomposition is also used for feature extraction. The ob-
jective of this study is to examine whether this novel score
can be used as a prognostic risk factor for all-cause mor-
tality in ICD patients and which channels are more useful
to identify patients in a high-risk group.

2. Material and methods

2.1. Dataset

The dataset used in this study contains 12-lead ECG sig-
nals from 616 patients who received an ICD in the Uni-
versity Hospitals Leuven. Each signal is 10 seconds long
and sampled at 250Hz. All leads of all signals were an-
notated on the presence of QRS fragmentation by 5 ex-
perienced raters. For all patients, the date and cause of
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death were collected. The mean follow-up time in the com-
plete database was 4.2±3.3 years. An extensive summary
of database characteristics (including inter- and intra-rater
variability) is provided in [3].

2.2. Feature extraction

After preprocessing to remove baseline wander and high
frequency noise, QRS segmentation is done and all non-
QRS segments of the ECG signal are set to zero. Ten
features are then extracted from the QRS complexes from
each lead individually. The features can be divided in
2 groups: features derived from Phase-Rectified Signal
Averaging (PRSA) and Variational Mode Decomposition
(VMD).
Feature extraction using PRSA was described in a previ-
ous study [4]. In short, in the first step all increasing points
on the QRS complexes of a channel are used as anchor
points. Fixed size windows of 50 samples around each an-
chor point are segmented and aligned. The first two steps
are repeated, this time selecting the decreasing points as
anchor points. Finally the PRSA curve is constructed by
taking the mean of the aligned windows. The PRSA curve
is then approximated by a linear fit. In channels with frag-
mentation, this curve will be less steep since anchor points
are dispersed over the complete QRS complex. Derived
features are the mean slope of the PRSA curve, and both
the slope and intercept of the linear approximation. More
details on the differences in feature values between normal
and fragmented complexes can be found in [4].
Variational mode decomposition splits the ECG signal in
k discrete bands which are compact around a central fre-
quency. It is similar to empirical mode decomposition,
but uses non-recursive techniques and has been shown to
be more robust to noise [5]. When k is fixed to 5, the
QRS complex is contained in the high-frequency bands 3,
4 and 5. Fragmentation introduces extra high-frequency
components to the QRS complex, which are also present
in the output of VMD. More specifically, fragmentation
can introduce extra peaks in the QRS bands and will also
increase their central frequency. The average number of
peaks per QRS complex in bands 3, 4 and 5 and their cen-
tral frequency are therefore selected as additional features.
A last feature is extracted directly from the ECG signal,
namely the average number of local optima per QRS com-
plex.

2.3. QRS fragmentation score

The features calculated in the previous step are used as
input to an SVM classifier with RBF kernel. Only sig-
nals with perfect agreement among all 5 raters are used
for training. 75% of this subset is randomly chosen for
training and the remainder is the test set. A second test set

combines the first test set with the signals where no perfect
agreement is reached. The hyperparameters of the SVM
are optimized using 10-fold cross-validation. The output
of the SVM (e.g. the score belonging to the positive class)
is finally transformed to a value between 0 and 1 with Platt
scaling, which fits a logistic regression model to the scores
[6]. The QRS fragmentation score is determined for each
channel individually.

2.4. Optimal cut point determination

The endpoint considered in this study is all-cause mor-
tality at 7.5 years. We will dichotomize the fQRS score of
each lead by determining an optimal cut point θch for each
channel to distinguish a high-risk and low-risk group. The
patients are first divided in a training and test set: 2

3 of the
patients are used to determine the cut points, the remainder
is used to test the results. Training and test groups contain
equal ratios of censored and non-censored patients.
Since the focus of this study is to determine the usability of
the fQRS score for risk assessment, only univariate analy-
ses are considered here. Kaplan-Meier analysis is used to
calculate survival curves, risk tables and hazard ratios [7].
Statistical differences between the curves of 2 groups are
analysed with logrank tests.
In order to get a robust estimate of the optimal cut point
that is less dependent on the choice of training set, we use
bootstrapping to generate 2500 bootstrap samples. Each
bootstrap sample is drawn from the training set. Optimal
cut points for each channel ch and each bootstrap sample i
are determined with the minimum p-value approach, e.g.
for each possible threshold a logrank test is performed,
and the threshold which generates the lowest p-value is se-
lected as cut point θ̂i,ch. The optimal cutpoint θch for each
channel is then defined as the median of the cutpoints θ̂i,ch
of all bootstrap samples. 95% confidence intervals for the
median are calculated as described in [8]:

C.I. = θch ± 1.7
1.25R

1.35
√
N

(1)

with R the interquartile range and N the number of boot-
strap samples.
The optimal cutpoints θch are finally used to dichotomize
the test set and construct the corresponding survival
curves. Differences are again evaluated with the logrank
test, with p<0.05 considered statistically significant.

3. Results

3.1. Classification results

Application of the SVM classifier on the first test set of
signals with perfect agreement resulted in an ROC curve
with an area under the curve (AUC) of 0.926.

Page 2



0 1 2 3 4 5
Number of positive scores

0

0.2

0.4

0.6

0.8

1

fQ
R

S
 s

co
re

Figure 1: fQRS scores for the second test set, grouped by
total score from all raters.

Training set Test set
Channel θopt 95%C.I. p-value HR

I 0.47 0.4574-0.4856 0.484 1.25
II 0.24 0.2239-0.2560 0.112 1.76
III 0.44 0.4368-0.4431 0.887 0.96

aVL 0.43 0.4189-0.4410 0.589 1.18
aVF 0.65 0.6355-0.6644 0.464 0.8
V1 0.52 0.5137-0.5263 0.757 1.15
V2 0.66 0.6531-0.6669 0.218 1.58
V3 0.58 0.5633-0.5967 0.014 2.23
V4 0.25 0.2446-0.2553 0.028 1.98
V5 0.77 0.7671-0.7728 0.102 1.73
V6 0.68 0.6690-0.6910 0.047 1.94

Table 1: Optimal cut points, 95% confidence intervals and
results on the test set for each channel.

Figure 1 shows the results on the second test set (includ-
ing the signals without perfect agreement). The signals are
grouped by their total score from all raters, e.g. the num-
bers of raters that agreed on the presence of fragmentation.
Boxplots show the median value for each group together
with the interquartile range of the fQRS score. From Fig-
ure 1 we can conclude that the automatically defined fQRS
score increases monotonically with increasing total score.

3.2. Survival analysis results

Table 1 shows the value of the optimal cut point and
confidence interval (determined on the training set) for
each channel and the results on the test set. For 3 chan-
nels, applying the optimal cutpoint on the independent test
set leads to statistically significant differences in survival
times between both groups: V3, V4 and V6. The corre-
sponding Kaplan-Meier curves for these channels can be
seen in Figure 2. They include risk tables and hazard ra-
tios. Two additional channels, II and V5 show notable
trends (p ≈ 0.1).

4. Discussion

The output of the SVM classifier is a score between 0
and 1 which represents the severity of QRS fragmentation
in one lead. The method is trained on a set of signals where
five raters agree on the presence of fQRS, and results on the
first test set show that the method is able to distinguish sig-
nals with clear fQRS from normal signals (AUC = 0.926).
To evaluate whether the fQRS score is related to the degree
of fragmentation, it is compared to the total score given
by all raters. The total score can be seen as an indication
of the severity of fragmentation in a lead: when fragmen-
tation is clearly present in a signal (e.g. when there are
more or larger deflections), more raters will agree on the
presence of fragmentation compared to cases where frag-
mentation is less clearly defined, or consists of only small
variations. Figure 1 shows that the fQRS scores are in line
with the total scores from all raters. The difference be-
tween the most extreme groups, 0 and 5, is most obvious,
which is expected since signals in these groups vary most.
Boxplots of groups 2 and 3 are rather similar: while the
median value of group 3 is slightly higher than in group 2,
the interquartile ranges are comparable. This is not unex-
pected: signals in groups 2 and 3 are all signals where the
presence of fragmentation is not clear and approximately
half of the raters disagree with each other.
In the second part of this study, the fQRS scores in differ-
ent channels are used to divide a dataset of ICD patients
into two groups in order to assess their risk on all-cause
mortality. Dichotomization of continuous variables in sur-
vival analysis is a debatable subject since the choice of op-
timal cut point should be done in a way so results can be
generalized. The use of bootstrapping on the training set
and evaluation of the performance on an independent test
set ensures that the optimal cut points determined here are
minimally dependent on the choice of training set.
Results on the test set indicate that the fQRS score in 3
different channels (V3, V4 and V6) can be used as an in-
dication of the risk on all-cause mortality in ICD patients.
Hazard ratios derived from the Kaplan Meier plots shown
in Figure 2 are approximately 2 (1.94-2.23). This means
that the probability of all-cause mortality for patients with
fQRS in these channels is roughly double the probability
for other patients. Similar can be drawn from the risk ta-
bles. The table for channel V3 shows that only 5/46 pa-
tients (10%) with a fQRS score larger than 0.58 in V3 is
alive at the end of the analysis period compared to 58/175
patients (33%) with fQRS score lower than the threshold.
V3 and V4, the channels with lowest p-values are located
in the anterior regions of the heart. This corresponds with
findings in [2], where the presence of fQRS in anterior
channels was an independent risk factor for mortality in
a subset of the same patient population. Clinically, the
presence of fQRS in a cardiac region is determined based
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(c) Channel V6

Figure 2: Kaplan-Meier plots of channels with statistically significant differences (p < 0.05) between survival curves. The
risk tables represent the number of patients alive at different time instances for fQRS scores higher and lower than θch.

on a combination of channels rather than single channels.
Combining scores per cardiac region is therefore a logical
extension of this study. This can be done by simply sum-
ming scores of individual channels or by more advanced
machine learning techniques. For instance, Interval Coded
Survival methods [9], which are based on SVMs and capa-
ble of modeling both linear and non-linear trends in data in
an interpretable way could be used for this purpose. Fur-
thermore (adjusted) Cox proportional-hazards regression
models can be used to perform a full multivariate analysis
by including the effects of additional clinical variables.

5. Conclusion

In this paper, we present an automated method to quan-
tify the amount of fragmentation in a single lead ECG sig-
nal. The results of both the classification and the survival
analysis indicate that representing fQRS as a score instead
of a binary value is a promising risk factor for all-cause
mortality in ICD patients. Currently, the practical use of
fQRS is limited because the parameter relies on visual an-
notations. The advantages of using the fQRS score pro-
posed in this paper are objective results directly derived
from the ECG signal that can be reproduced more reli-
ably. This novel way of detecting and quantifying QRS
fragmentation is therefore a promising way to promote the
clinical usefulness of the parameter.
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