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Abstract

Early detection and defibrillation of ventricular fibril-
lation (VF) has been associated with improved survival
of out-of-hospital cardiac arrest (OHCA) patients treated
with automated external defibrillators (AEDs). This study
proposes a method for VF detection using ECGs obtained
from OHCA patients. The dataset of the study contained
596 10-s ECG segments, 144 shockable and 452 non-
shockable, from 169 OHCA patients. The dataset was split
patient-wise into training (60%) and test (40%) sets. Each
ECG segment was band-pass filtered (1-30 Hz), waveform
features were computed and fed as observations to a Hid-
den Markov Model (HMM) that assigned each observa-
tion to one of the two hidden states, shockable or non-
shockable. The number of possible observations was re-
duced using k-means clustering. The optimization of the
method consisted of feature selection and optimization of
the number of clusters through a forward greedy wrapping
approach using patient-wise 10-fold cross validation in the
training set. The performance of the method was com-
puted in terms of sensitivity (SE) and specificity (SP) us-
ing the test set. This procedure was repeated 500 times to
estimate the distributions of the performance metrics. The
method showed a mean (SD) SE and SP of 94.4% (3.8) and
97.8% (1.2), respectively. The method is compliant with
the American Heart Association requirements.

1. Introduction

Out-of-hospital cardiac arrest (OHCA) is one of the
leading causes of global mortality with an average inci-
dence between 83.7-95.9 per 100,000 person-years [1]. At
the time of collapse most cardiac arrest patients present
ventricular fibrillation (VF) [2]. In these cases the rec-
ommended treatment is an early electrical defibrillation
which might be delivered before ambulance arrival by lay-
people using an automated external defibrillator (AED).
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The shock advice algorithm (SAA) of the AED analyzes
the surface electrocardiogram (ECG) and, the AED admin-
isters a shock if either VF or ventricular tachycardia (VT)
are detected. During the last decades, a vast number of
algorithms to detect shockable rhythms [3-6] have been
proposed. However, these algorithms have been devel-
oped and tested using ECGs from public databases which
may substantially differ from those available in OHCA
databases. Public databases contain ECGs recorded from
Holter devices which enables the analysis of the VF in
its first stage, right after its onset. Thus, VF from pub-
lic databases present higher amplitude and fibrillation fre-
quency than those from OHCA databases which are usu-
ally recorded between 5-10 min after the onset, once the
AED is on the scene and when VF presents smaller am-
plitude and lower fibrillation frequency. Non-shockable
rhythms in public databases correspond mostly to normal
sinus rhythms showing narrow QRS complexes and nor-
mal heart rates. While in OHCA databases, these rhythms
mainly correspond to asystole (AS) or pulseless electri-
cal activity (PEA) which shows wider QRS complexes and
lower heart rates.

The aim of this study is to develop a method to de-
tect shockable rhythms using ECGs obtained from OHCA
episodes. To be considered from implementation into
AEDs, the method should be compliant with the minimum
90% sensitivity (SE, the capacity to correctly detect shock-
able rhythms) and 95% specificity (SP, the capacity to cor-
rectly detect non-shockable rhythms) requirements of the
American Heart Association.

2. Materials and methods

2.1. Data collection

The data used in this study were collected from OHCA
patients treated by Tualatin Valley Fire&Rescue (Tigard,
OR, USA) using the Philips HeartStart MRx moni-
tor/defibrillator between 2013 and 2014. The dataset of
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the study consisted of a total of 596 10-s ECG segments,
144 shockable and 452 non-shockable, from 169 OHCA
patients. Four emergency medicine doctors annotated by
consensus the ECG segments as VF or VT in the shock-
able category and as organized rhythm (OR) in the non-
shockable category. Following the procedure of previous
studies in VF detection, AS rhythms were not included as
in the SAAs of the AEDs, as AS is usually identified be-
fore the shock/no-shock decision using simple algorithms
based on thresholds in amplitude or power of the ECG
[7,8]. Figure 1 shows an example of shockable and non-
shockable rhythms in the dataset of the study.
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Figure 1. Example of ECG segments of the dataset of the

study. The top panel shows a VF and an OR is depicted in
the bottom.

2.2. Methods

Preprocessing and feature extraction

The ECG segments were processed following the pro-
cedure proposed in Amann et al. [4]. That is, first the
mean value of the segment was subtracted, second a five-
order moving average filter was applied, then, a high-pass
filter with a cutoff frequency of 1 Hz was used to remove
the baseline drift and finally, a low-pass Butterworth fil-
ter (cutoff frequency of 30 Hz) to eliminate high frequency
noise.

From the processed ECG, a total of seven shock/no-
shock decision features were computed. These features
have been extensively described and showed great dis-
criminative power in previous studies on VF detection [9].
Specifically, the computed features were TCI [4], bCP,
bWT [7], x1 and x2 [10] in the time-domain; bW [7] in
the frequency-domain; and the complexity feature Sam-
pEn [11].

Architecture of the model

Figure 2 shows an overview of the process followed
to develop and test the VF detection method. Data were
divided patient-wise into two quasi-stratified sets, train-
ing (60%) and test (40%), ensuring that the prevalence
of shockable rhythms in the test set was between 15-30%
(24% in the whole dataset). The selection of the best
K -feature subset for the shock/no-shock decision and the
optimization of the method were done using patient-wise
10-fold cross validation in the training set. The perfor-
mance of the method was measured in terms of SE and SP
by comparing the shock/no-shock decisions made by the
method in the test set against the rhythm annotations made
by the clinicians.
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Figure 2. Overview of the procedure followed to develop
and test the VF detection algorithm.

VF detection algorithm

The algorithm for the shock/no-shock decision was
based on a hidden Markov model (HMM) with a set of two
hidden states, Q@ = {q1, g2}, where ¢; and g» represent no-
shock and shock decisions, respectively. Figure 3 shows
the architecture of the model where A € My, corresponds
to the transition probability matrix where each element,
a;,;, depicts the probability of transiting from state g; to
state g;, for 4,5 = 1,2. O = {01, 02, ...,0n} represents
the N different possible observations, and B, By € Myxi
contain, the so called observation likelihoods or emission
probabilities. That is, B; includes the p(0,|q1 ) conditional
probabilities representing the probability of an observa-
tion o,, being generated from the state ¢; (no-shock), and
similarly, Bs contains p(o,|g2) representing the probabil-
ity of an observation o,, being generated from the state g
(shock) forn =1, ..., N.

The shock/no-shock decision in the HMM lies in find-
ing the most probable hidden state (q; or g2) for the tth

Page 2



p(o1]q1) p(o1|q2)
By= p(oz:|ql) By= p(og:\qg)
p(Oz\}\ql) p(ox"\qz)
) A
: a21
SHOCK
: (q2)
NO-SHOCK
CJ (q1)
a11 aia
Figure 3.  Architecture of the VF detection algorithm

based on the HMM with two hidden states ¢; (no-shock)
and g5 (shock).

analyzed ECG segment, ¢°. This decision is based on the
following two assumptions:

1. Markov assumption: the probability of being at state
g; in the t" analyzed ECG segment only depends on the
state of the (t — 1)™ segment, ¢*~!. That is,

p(q" = gjlg*a"") = p(a" = gjla" ")
2. Output independence: the probability of an observa-

tion, o,, only depends on the state g; that produced the
observation and not on any other states or observations.

1)

Therefore, the shock/no-shock decision function is:

¢t = argr2nax vl (D)

j=1
where v§ is known as the Viterbi path probability that
represents the probability of being in state g; for the th
analyzed ECG segment, after seeing the first ¢ observa-
tions and passing through the most probable state sequence
q",¢*,...,q""'. Given the observation o, the value of v’

can be computed as follows:

1<j<2 (@

where v/ ™! is the Viterbi path probability from the (t—1)"
analyzed ECG segment, a; ; is the transition probability
from previous state g; to current state g;, and p(0n|q§) is
the emission probability of an observation o,, being gener-
ated from the current state g;. The Viterbi path probabil-
ities are initialized as follows, considering that the model
begins in state q;:

vj =ay;-plonlq;) 1<j<2 3)

Feature selection and model optimization

As shown in Figure 2, the feature selection (FS) con-
sisted of a forward greedy wrapping approach using
patient-wise 10-fold cross validation in the training set. At
each step of the feature selection process, the training K-
feature vectors were first grouped using k-means into N
clusters. Thus, the number of possible observations with
which fed the HMM classifier was reduced. Then, using
those observations the HMM parameters (A, By, Bs) were
estimated using the Baum-Welch algorithm [12] through
the Statistics and Machine Learning toolbox of Matlab
2015b (MathWorks Inc., MA, USA). Finally, the test K-
feature vectors were assigned to one cluster, fed to the
trained HMM and classified as shock/no-shock. The deci-
sions were compared against the rhythm annotations made
by the clinicians to compute SE and SP.

The criterion for feature inclusion was the minimization
of the balanced error rate, BER=1-(SE+SP)/2, of the HMM
classifier. The number of selected features was fixed to
five, K = 5, in order to reduce computational burden and
to avoid overfitting while preserving the accuracy in the
shock/no-shock classification [9]. Two features, bCP and
bWT, that are part of a commercial SAA and have shown
great discriminative power in the shock/no-shock decision
[7,9] were always kept in the model and the rest were
sequentially added until the best 5-feature subset was ob-
tained. The number of clusters, /N, was optimized through
a 10x1 grid search in the range 10 < N < 100 using the
training set.

Evaluation

The best 5-feature subset and the optimal N were used
to build the optimal HMM classifier with the whole train-
ing set. The performance of the classifier was measured in
terms of SE and SP using the test set (see Figure 2). The
whole training/test procedure was repeated 500 times in
order to statistically characterize the performance metrics.

3. Results

The method showed a mean (standard deviation) SE and
SP of 94.4% (3.8) and 97.8% (1.2), respectively. These
results are clearly above the performance metrics recom-
mended by the American Heart Association (SE>90% and
SP>95%). The method used a median (interquartile range)
of 70 (50-90) clusters. The most discriminative features,
excluding bCP and bWT that were always included in the
model, are ranked in Table 1 according to the number of
times (L) each feature was selected in the 500 random rep-
etitions of the training/test procedure.
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Table 1. Number of times (L) each feature was included in
the model in the 500 random repetitions of the training/test
procedure.

Feature L Feature L

bCP 500 x2 278
bWT 500 x1 228
SampEn 487 bW 104
TCI 404

4. Discussion

This study proposes a method based on a HMM classi-
fier to detect VF during OHCA. Unlike the majority of the
previous contributions on VF detection [3—6], our method
was developed and tested using ECGs obtained directly
from OHCA episodes and met the minimum SE and SP re-
quirements recommended by the American Heart Associ-
ation. Furthermore, it uses only five-feature subsets which
implies low computational demands and makes the method
suitable for implementation into AEDs.

The method was build in the basis of two well-known
features, bCP and bWT, that compose the core of the
SAA of the Reanibex series defibrillators (BexenCardio,
Ermua, Spain) and has shown great discriminative power
for shock/no-shock decision [7,9]. Three additional fea-
tures were added to complete the 5-feature subset used
by HMM classifier. The most selected feature was the
SampEn which was almost always included in the model
(487/500). These results are aligned with those reported by
Figuera et al. [9]. This might happen because it adds infor-
mation on the waveform complexity different from and not
correlated with that provided by bCP (slope-based feature)
and bWT (time feature). TCI was ranked next (404/500),
it is an indirect way to estimate heart rate, and it is well
known that higher heart rates are associated with shock-
able rthythms. The rest of the features complement the pre-
vious ones, but there is a great difference in the number of
times they were included.

In conclusion, this study have shown that a HMM-based
algorithm that uses a 5-feature subset can accurately detect
VF during OHCA and might be well suited for implemen-
tation into AEDs due to its low computational demands.
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