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Abstract

Holter monitoring is mainly used for medical follow-
up and diagnosis of patients with suspected cardiac ar-
rhythmia such as heart rhythm irregularities that can
be missed during classical electrocardiogram recording
(ECG). However, these long-term continuous recordings
represent a large amount of data that cannot be processed
by hand. In this article, we present a new method based
on Non-negative Matrix Factorization (NMF) to detect R-
peaks in Holter signals. The approach consists in two
stages: source separation based on the different time-
frequency patterns of the QRS complexes and the other
waves of the signal (P and T waves) and R-peak detection
using Automatic Objective Thresholding (AOT). The pro-
posed approach is validated on the MIT-BIH Arrhythmia
database and achieves an average sensitivity of 99.59%
and a precision of 99.69%. Using the MIT-BIH Noise
Stress Test database, we also show the ability of our ap-
proach to discriminate R-peaks in signals contaminated
with different noises.

1. Introduction

In recent years, there has been an increasing inter-
est in Holter recordings as it allows reliable detection of
cardiac pathologies with infrequent short-term transient
symptoms. Yet, one of the key issues concerning long-
duration Holter electrocardiograms (ECGs) is the amount
of data to be processed by the clinician. The develop-
ment of an automatic tool able to delineate and detect ECG
events has become essential. One of the main parameters
representing the heart health of the patient is the heart rate
variation as it provides great knowledge about cardiovas-
cular activity. It is computed by detecting all contractions
of the heart, i.e. all R peaks.

To this aim, various methods based on wavelet trans-
form [1], Hilbert transform [2], Bayesian framework [3] or
Pan-Tompkins algorithm [4] have been proposed. The fo-
cus on this paper is to demonstrate the feasibility of source
separation in ECG signals in order to detect R peaks, using
a blind source separation algorithm called Non-negative
Matrix Factorization (NMF). Some researches have been
made combining electrocardiogram and NMF, such as
ECG-EMG separation [5] or extraction of fetal ECG [6],
but to the best of our knowledge, none on the separation of
the ECG waves.

2. Methodology

2.1. Non-Negative Matrix Factorization

Non-negative Matrix Factorization is an unsupervised
learning method which aims at decomposing a non-
negative matrix (V ∈ <M×N ) into two non-negative ma-
trices (W ∈ <M×S and H ∈ <S×N ):

V = WHT =

S∑
s=1

wsh
T
s (1)

where (·)T stands for matrix transposition and S is the
number of sources to decompose in the input signals V
(consisting in M samples of N non-negative variables).
W is a basis matrix, meaning that each column ws of W
is a basis vector (source) of the input mixture V and H is
the coefficient matrix, each row hT

s of H representing the
activation set for each point of V . The matrices W and H
are computed iteratively in order to minimize the distance
between V and WHT through the following process:

Wij ←Wij
(V HT )ij

(WHHT )ij
(2)
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Hij ← Hij
(WTV )ij

(WTWH)ij
(3)

The minimization of the error relies on a cost function
defined by:

D(V |WHT ) =
∑
i

∑
j

d(Vij |(WHT )ij). (4)

One can use for d the squared Euclidian distance, the gen-
eralized Kullback-Leibler divergence or the Itakura-Saito
divergence [7]. It is also possible to add optional con-
straints to enforce some desired properties to the matrices
W and H .

2.2. Proposed detection technique

2.2.1. Sources

NMF is a technique solving source separation problems.
Therefore, our goal was to test this method on Holter sig-
nals to separate the different waves. The first intuition
would be to make a medical separation between the atrial
and the ventricular activity (P wave v.s. QRS complex and
T wave) as they produce distinct temporal patterns. How-
ever, as P and T waves have very similar frequency pat-
terns, it would be very difficult to separate them for NMF.
The easiest decomposition in terms of signal processing
would be QRS complexes v.s. non-QRS parts (including P
wave, T wave and potentially U wave).

In [8], the typical relative power spectrum of an ECG
signal is presented with its different components: (1) QRS
complex is concentrated in the mid-frequency range, with
its fundamental frequency at 10 Hz. R peak with its fast
slope is a high-frequency component around 100 Hz; (2)
P and T waves have a low frequency distribution (around
1-2 Hz); (3) Noise can be low-frequency (motion artifact
and baseline wander), mid-frequency (muscle noise) or
frequency-specific (as power grid, 50-60 Hz).

The main difficulty comes from the fact that QRS com-
plexes and non-QRS parts (P and T waves) can overlap in
the frequency domain.

2.2.2. Step 1: NMF

Our method consists in two stages, namely source sep-
aration and detection of R peaks. A pre-processing is not
necessary but we filtered the ECG signal in order to remove
power line interference (50-60 Hz). No baseline wander
removal algorithm is needed in this approach.

The magnitude of the spectrogram of the ECG signal is
chosen to meet the non-negativity requirement (V matrix).
The NMF algorithm is applied with S = 2 sources without
constraints and we chose a random initialization.

The separation gives two sources as outputs: the first

source is generally the one with most energy which rep-
resents QRS complexes and the second one contains the
non-QRS parts. Noise can be put in either sources depend-
ing on its frequency distribution.

2.2.3. Step 2: Peak detection using Auto-
matic Objective Thresholding (AOT)

The QRS source given in output of the NMF algorithm
takes the form of spike activity. Therefore, the method
used to detect R-peaks is inspired by the work of Tan-
skanen et al. [9] proposed to detect neuronal spikes.
Classical detection algorithm for R-peaks (Pan-Tompkins,
Wavelet...) were not sufficiently reliable in our case.

We modified some parameters of the AOT method into
fitting the ECG signal. The histogram of the first minute of
the signal is computed with k = 500 bins. The smoothed
gradient of the histogram is then calculated and the central
pattern is delineated in order to get the two threshold levels
above and below with which spikes will be detected. We
applied a default refractory period of 0.3 second.

3. Results and discussion

3.1. Dataset

The MIT-BIH Arrhythmia database (MITADB) was
used to test our method. It contains 48 half-hour Holter
ECG recordings, of two channels each. The recordings
are sampled at 360 Hz with 11-bit resolution over a 10
mV range. Two or more cardiologists independently anno-
tated each record and disagreements were resolved to ob-
tain reference annotations for each beat. The ECG records
have acceptable quality, sharp and tall P and T waves, neg-
ative R waves, small R-peak amplitudes, wider R waves,
muscle noise, baseline drift, sudden changes in heartbeat
morphology, multiform PVC, long pauses, and irregular
heart rhythms [10]. In order to better compare with other
methods, we worked on the first channel of each ECG
recording and excluded episodes of ventricular flutter from
record 207. We also used the complex baseline wander,
electrode artifacts and motion artifacts from the MIT-BIH
Noise Stress Test Database (NSTDB) to test the noise tol-
erance of our method. In our second test, we contaminated
all signals from the MITADB with those three types of ar-
tifacts to create noisy ECG signals.

3.2. Evaluation parameters

We computed three quantitative indicators: True Pos-
itives (TP) when an R peak is correctly detected by our
algorithm, False Positives (FP) when noise is detected as
an R peak and False Negatives (FN) when an R peak is
missed. Then, the following parameters are used for the
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Figure 1. Source separation of record 100 from MITADB
with Non-Negative Matrix Factorization (NMF). (a) Orig-
inal ECG, (b) First extracted source, representing QRS
complexes (c) Second source, representing P and T waves
and some remaining components of QRS complexes.

evaluation of our algorithm: Sensitivity (Se = TP
TP + FN ·

100%), Precision (Pr = TP
TP + FP · 100%) and Accuracy

(Acc = FP
TP + FP + FN · 100%).

3.3. Experiment results

Complete separation results are shown in Figure 1 for
Record 100 of the MITADB. Using NMF source sepa-
ration algorithm on Holter recordings has several advan-
tages. It firstly allows to clearly isolate QRS complexes
even if some QRS components remain in the second source
as QRS complexes partially overlap P and T waves in the
frequency domain (see Figure 1). Variation dynamics be-
tween QRS complexes and the other waves are sufficient
to separate the predicted sources. In Figure 2b and Fig-
ure 3b, separation is also represented in the case of base-
line wander and an abnormal ventricular activity. The sep-
aration achieves good results for Figure 1 and Figure 2:
in the first source, R-peaks have a spike-like morphology
and the baseline wander is removed. However in Figure 3,
the QRS separation is less efficient: R-peaks are still de-
tectable in the QRS source but some arrhythmic beats (ven-
tricular couplets) have a very low amplitude.

Our method uses a constraint-free version of the NMF
algorithm, and one can easily imagine to add constraints
in order to better separate the two sources. In our case,
the actual separation is sufficient to detect R-peaks in most
cases. However, if QRS onsets and offsets have to be deter-
mined as well, our separation will probably not be accurate
enough.

NMF algorithm removes any baseline wander in its QRS
output source. The case of higher frequency noise is more
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Figure 2. R-peak detection of record 112 from MITADB,
using Automatic Objective Thresholding (AOT). (a) Orig-
inal ECG, (b) QRS source with the threshold levels (c)
Original ECG annotated with detected R peaks (circles).

complicated: it can be put in any of the two sources ac-
cording to its frequency composition. If it is very low fre-
quency, it will go in the non-QRS parts (less than 10Hz, as
baseline wander) and if higher, it will be found in the first
source.

Two examples of R peak detection using AOT are pre-
sented in Figure 2 and Figure 3. In Table 1, results of our
method are compared with references. The algorithm has
a total detection failure of 863 beats, with 325 FP beats
and 538 FN beats, out of 109,809 beats. The sensitivity,
which measures the ability to detect true beats, is slightly
less than the other methods (99.59%) because the thresh-
olding levels computed on the first minute of the signal are
applied on the whole ECG. Also, as the QRS source is not
polluted by baseline wander or tall P and T waves, a more
sensitive thresholding can be created to be more robust to
cases like in Figure 3. The precision of our algorithm, in-
dicator of its ability to discriminate false and true beats, is
similar to the other methods. The accuracy of our algo-
rithm is also slightly lower than the other methods due its
sensitivity.

In a second analysis, we polluted the signals from the
MITADB with the different noises provided in NSTDB.
Results are found in Table 1 for baseline wander, electrode
motion and muscle artifacts. Because our method has not
been re-tuned to fit the new signals, the results are promis-
ing and show that the algorithm can detect R-peaks with
different noises.

4. Conclusion

In this paper, a new strategy to detect R-peaks in Holter
recordings is presented. This algorithm separates QRS
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Figure 3. R-peak detection of record 106 from MITADB,
using Automatic Objective Thresholding (AOT). (a) Orig-
inal ECG, (b) QRS source with the threshold levels (c) is
the original ECG annotated with detected R peaks (circles)
and missed ones (squares).

Method Beats Se (%) Pr (%) Acc (%)
Pan & Tompkins [4] 116137 99.76 99.56 99.33
Christov [11] 110050 99.74 99.65 99.56
Zidelmal et al [12] 109494 99.64 99.82 99.47
Chouakri et al [13] 110934 98.68 97.24 96.03
Our algorithm (1) 109809 99.59 99.69 99.22
Our algorithm (2) 109809 94.76 96.52 91.63
Our algorithm (3) 109809 90.21 84.87 77.71
Our algorithm (4) 109809 96.70 89.23 86.60

Table 1. Comparison of R-peak detection indicators ob-
tained on the MIT-BIH and NSTDT databases for several
methods. (1) Original MIT-BIH Arrhythmia Database (2)
MITADB with baseline wander (3) MITADB with elec-
trode motion artifacts (4) MITADB with muscle artifacts.

complexes from non-QRS parts (P and T waves) using
Non-negative Matrix Factorization, a source separator. In
our experiments on the MIT-BIH Arrhythmia database, our
method achieves comparable results in terms of sensitiv-
ity, precision and accuracy with other existing methods and
proves to be noise-tolerant. Future works will focus on the
use of the second source in the detection of atrial fibrilla-
tion.
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