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Abstract

We present a method for classifying target sleep arou-
sal regions of polysomnographies. Time- and frequency-
domain features of clinical and statistical origins were
derived from the polysomnography signals and the featur-
es fed into a Bidirectional Recurrent Neural Network, us-
ing Long Short-Term Memory units (BRNN-LSTM). The
predictions of five recurrent neural networks, trained us-
ing different features and training sets, were averaged
for each sample, to yield a more robust classifier. The
proposed method was developed and validated on the
PhysioNet Challenge dataset which consisted of a train-
ing set of 994 subjects and a hidden test set of 989 subj-
ects. Five-fold cross-validation on the training set resulted
in an area under precision-recall curve (AUPRC) score
of 0.452, an area under receiver operating characteristic
curve (AUROC) score of 0.901 and intraclass correlation
ICC(2,1) of 0.59. The classifier was further validated on
the PhysioNet Challenge test set, resulting in an AUPRC
score of 0.45.

1. Introduction

In the scoring manual by the American Academy of
Sleep Medicine (AASM), arousals are defined as abrupt
shifts of electroencephalography (EEG) frequency that last
at least 3 seconds, with at least 10 seconds of previous
stable sleep [1]. Arousals can occur spontaneously or as
a result of sleep-disordered breathing or other sleep disor-
ders [2]. Respiratory Event Related Arousals (RERA)
are arousals that are caused by sequences of breaths
lasting more than 10 seconds characterized by increasing
respiratory effort [1]. The identification of arousals is
important for the evaluation of sleep continuity and for
diagnosis of various sleep disorders [3].

Manual scoring of these events is costly due to the
huge amount of data recorded per night, and difficult
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due to variance across patients and technicians experience
[4] [5]. Automation of the detection procedure is th-
erefore important and different works have explored dif-
ferent ways of automating the process. Alvarez-Estevez
and Moret-Bonillo [6] developed a method for the autom-
atic detection of EEG arousals using two EEG channels
and electromyography (EMG). Experiments conducted on
20 patients reported a sensitivity and specificity respecti-
vely of 0.86 and 0.76. Behera et al. [7] followed the
study, adding more features to the input of an artificial
neural network, and combining different models. Experi-
ments conducted on 26 patients reported a sensitivity of
0.81 and a specificity of 0.88 with an error of 0.13. More
recently, Isaac Fernandez-Varela et al. [8] combined vari-
ous signal analysis solutions to identify relevant arousal
patterns with special emphasis on robustness and artifact
tolerance. Experiments conducted on 22 patients reported
precision of 0.86 and F1 score of 0.79. However, all
of these methods were developed on datasets containing
relatively few subjects and may not generalize well across
different populations.

We propose a recurrent neural network-based approach
for classifying target sleep arousal regions, using full
polysomnography recordings. The algorithm was trained
and tested on the PhysioNet Challenge 2018 database,
which includes 1985 subjects [9]. The results are thus
based on a larger dataset than previous methods. The met-
hod was implemented using Keras 2.1.5, using Tensorflow
1.8.0 backend. The code was submitted for the Open-
Source Challenge call of the PhysioNet Challenge 2018
[9].

2. Methods

We employed a three layer neural network. The first
hidden layer is a BRNN and the second hidden layer is a
dense neural network. Time- and frequency domain featur-
es were derived from multiple available signal including
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the EEG, ECG and respiratory signals. The features were
fed into the neural network, which after training outputs
the probability that a given segment is a target arousal reg-
ion.

2.1. Feature extraction

For each subject a variety of biometric signals, relevant
to sleep studies, were recorded. EEG recordings were
made in the following configurations: F3-M2, F4-M1,
C3-M2, C4-M1, O1-M2, O2-M1. Additionally the left
eye electrooculogram was recorded using the E1-M2 con-
figuration. Signals relating to cardiorespiratory activity
were recorded and were as follows: EMG recordings
made at the chin, chest and abdomen; oxygen saturati-
on (Sa02), airflow, and electrocardiogram (ECG). Featur-
es were extracted from all relevant signals with different
signals requiring unique processing methods. All featur-
es were calculated over a 10 second sliding window with
50% overlap unless otherwise specified.

2.1.1. EEG features

For each EEG signal, various frequency and time
domain features were extracted. @ The signals were
decomposed into sub-bands using the wavelet packet
decomposition (WPD). The Daubechies 4 wavelet has
been shown to perform well in EEG feature extraction
[10] and was used to decompose the signal down to the
4th level, resulting in sub-bands of 6.25 Hz resolution.
For each sub-band, statistical features were calculated, as
well as sub-band energy. Additionally, the Hjorth para-
meters were calculated for the signals. These parameters
are Hjorth activity, mobility, and complexity and represent
signal power, mean frequency, and change in frequency
respectively [11].

2.1.2. Respiratory features

Features were extracted from the respiratory signals
which could indicate respiratory disturbance. Statistical
features calculated from the SaO2 signal indicate changes
in oxygen saturation which correlate with apnea [12].
Since the characteristics of the airflow, chest, and abdomen
signals vary between individuals, the statistical features gi-
ve information about changes in respiratory activity. Cor-
relation between abdomen and thorax signals was calcula-
ted to detect when the two signals go out of phase, which
is an indicator of obstructive apnea [13].

2.1.3. ECG features

For the ECG signal we derived various features relat-
ing to the heart rate. The QRS complexes of the ECG

signals were detected using a robust R-peak finder [14].
From the locations of the R-peaks, the heart rate and Heart
Rate Variability (HRV) signals were calculated. Statistical
features were calculated from the heart rate while more
complex frequency domain features were derived from the
HRV. The power spectrum of the HRV is an important
indicator of the function of the nervous system and has
been shown to be a good indicator of apneas [15]. The
HRV signal was interpolated using cubic spline interpolati-
on to get a signal of constant sampling frequency. A
spectrogram of the HRV was then calculated using Welch’s
method with a sliding Hamming window. This was done
using windows of 5 minute and 30 minute duration to capt-
ure the short and long term dynamics of the HRV. For both
windows a stride of 5 seconds was used. The frequency
bands of interest are the very low frequency (VLF) 0.003 -
0.04 Hz, low frequency (LF) 0.04 - 0.15 Hz and high frequ-
ency (HF) 0.15 - 0.4 Hz [16]. For each band we calculated
the normalized total energy, peak energy and peak frequ-
ency as well as the ratio of LF and HF power.

2.2. Classification

Recurrent neural networks, using LSTM hidden units,
are powerful models for learning from sequential data
since they are capable of remembering information for
a long period of time. Bidirectional recurrent neural
networks can further learn from both past and future states,
which is important when context of the input is needed,
such as when detecting sleep arousals [17]. We thus consi-
dered LSTM-based BRNN model for the sleep arousal
detection.

2.2.1. Data preparation

After feature extraction, the data was reshaped for the
BRNN-LSTM layer into a three-dimensional array, where
the three dimensions are:

o Number of training sequences, N

« Sequence length (number of time-steps), W

« Number of features of each sequence, F'

By experimenting with different values for the sequence
length and different positions of the label, we found W =
20 to result in the best performance, positioning the label
at time step 11. The time-steps were composed of featur-
es extracted over a 10 second window with a 5 second
overlap. Thus, each sequence considered by the classifier
was 20 - (10 - 0.5) = 100 seconds long, with the neural
network looking 50 seconds in the past and 40 seconds in
the future.

Regions in the training dataset labeled neither as normal
regions nor target arousal regions were ignored, as those
regions are not considered in the PhysioNet Challenge.
The remaining training dataset is unbalanced, with 7% of
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the data being arousal regions and 93% being normal sleep
regions. To achieve a more balanced training dataset we
randomly removed 90% of the normal sleep regions.

2.2.2. Sequence Classifiers

We experimented with several model structures and
hyperparameters. The model that performed the best was a
three-layer model, where the first hidden layer is a LSTM-
based BRNN layer consisting of S0 LSTM blocks, and the
second hidden layer is a dense layer consisting of 50 nodes.
We use a softmax activation function on the output layer to
extract probabilities for classification. To combat overfitt-
ing, dropout is applied to the output of both hidden layers,
and all layers have 12-kernel regulizer of strength 0.01 to
further combat overfitting [18]. The neural network was
trained using a batch size of 200, learning rate was reduced
on plateau and early stopping was used. The loss functi-
on used was binary cross-entropy and the optimizer was
Adam.

2.2.3. Ensemble Classifier

Five classifiers of the same structure as described above
were trained on different subsets of the training data and
using different sets of features. The predictions of these
classifiers were then averaged per sample, to create a more
robust classifier and to reduce variance arising from the
random initialization of the weights and the random split
between train and validation set. The final ensemble classi-
fier thus consisted of five classifiers, each trained on all the
respiratory features, but with different set of two to three
EEG and ECG features.

3. Results and Discussion

In this section we evaluate the performance of our met-
hod for classifying target arousal regions, and furthermore
compare the importance of different feature groups.

3.1. Model Validation

To evaluate the performance of our method, we perfor-
med a 5-fold cross-validation on the training dataset. Dur-
ing each cross validation fold, 20% of the available training
data was set aside for final testing. The other 80% were
used for the training and validation of the models during
the cross validation. For each model the validation set was
randomly selected containing 10% of the training and vali-
dation data.

According to the PhysioNet Challenge scoring system,
results are reported as gross AUPRC score and AUROC
score [9], however only the gross AUPRC score is used to
rank competitors in the PhysioNet Challenge. The cross

validated scores of the individual classifiers, as well as the
ensemble classifier, are shown in table 1. The ensemble
classifier gave the best results, its performance was higher
than any of the individual classifiers. The method was
verified using the hidden test set of the PhysioNet Chal-
lenge. It achieved an AUPRC score of 0.45, which places
it second in the competition.

Table 1. Cross validated AUPRC and AUROC scores of
the individual models as well the final ensemble

Model AUPRC AUROC
Mean | STD | Mean STD
Model 1 0.432 | 0.037 | 0.893 | 0.0026
Model 2 0.429 | 0.035 | 0.893 | 0.0027
Model 3 0.426 | 0.038 | 0.891 | 0.0030
Model 4 0.430 | 0.040 | 0.893 | 0.0020
Model 5 0.428 | 0.032 | 0.895 | 0.0030
Ensemble model | 0.452 | 0.038 | 0.901 | 0.0030

The performance of the classifier was further analyzed
by comparing the arousal indices of the manual and autom-
atic annotations. The arousal index for the automatic
classifier was calculated by setting the prediction thres-
hold as 0.82 and removing all predicted arousals in unscor-
ed regions. The intraclass correlation ICC(2,1) [19] was
calculated for the arousal indices and resulted in a cross-
validated score of 0.59. This value is within the reported
range of intraclass correlation between human scorers
(0.50-0.85), but lower than the reported average (0.68) [5].

3.2. Feature Importance

Calculating feature importance with recurrent neural
networks is not straight forward, as standard feature
importance calculations do not take into account the
temporal attribute of the RNNs. To get an estimation of the
importance of the features, we trained our classifier using
three different groups of features and compared the cross
validated AUPRC scores. The feature groups compared
are features derived from EEG signals, features derived
from ECG signals and features derived from respiratory
signals. The respiratory features performed best with an
AUPRC score of 0.41, suggesting they are most import-
ant in detecting arousals. The EEG signals resulted in
an AUPRC score of 0.27 and the ECG signals performed
the worst with an AUPRC score of 0.20. This was to be
expected since the majority of the scored arousals were
RERAs.

4. Conclusion

The problem of automatically detecting sleep arousals
is not a trivial one and more work remains to be done.
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However, being able to effectively score arousals autom-
atically is important, as manual scoring of arousals is time
consuming and difficult. In this paper we have proposed a
method for classifying target sleep arousal regions, using
a BRNN-LSTM ensemble model. The method was vali-
dated on PhysioNet Challenge 2018 dataset and the results
are encouraging, suggesting that the automatic classificati-
on of arousals is an achievable task. We intend to further
develop our method for clinical application, by generaliz-
ing it for a different dataset and improving efficiency with
feature selection and code optimization.
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