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Abstract 

The dichotomous criterion for atrial electrogram (AEG) 
classification as proposed by commercial systems 
(normal/fractionated) to guide ablation has been shown 
insufficient for persistent atrial fibrillation (persAF) 
therapy. In this study, we used unsupervised classification 
to investigate possible sub-groups of persAF AEGs. 3745 
bipolar AEGs were collected from 14 persAF patients after 
pulmonary vein isolation. Automated AEG classification 
(normal/fractionated) was performed using the CARTO 
criterion (Biosense Webster). The CARTO attributes (ICL, 
ACI and SCI) were used to create a 3D space distribution. 
K-mean with five groups was implemented. Group 1 (43%) 
represents normal AEGs with low ICL, high ACI and SCI. 
Groups 2 (9%) and 3 (9%) have shown similar low ICL, 
but Group 3 has shown AEGs with short activation 
intervals, as opposed to Group 2. Group 4 (23%) suggests 
moderated fractionation, with high ACI but low SCI. 
Group 5 (15%) has shown highly fractionated AEGs with 
high ICL, low ACI and SCI. The three attributes were 
significantly different among the five groups (P<0.0001), 
except ICL between Groups 3 and 4 (P>0.999) and SCI 
between Groups 3 and 5 (P>0.999). The five sub-groups 
of AEGs found by the k-mean have shown distinct 
characteristics, which could provide a more detailed 
characterization of the atrial substrate during ablation. 

 
 

1. Introduction 

Atrial fibrillation (AF) is the most common sustained 
arrhythmia found in the clinical practice, and it is a leading 
cause of stroke [1]. Although pulmonary vein isolation 

(PVI) has been proved effective in treating paroxysmal AF, 
the identification of critical areas for successful ablation in 
patients with persistent AF (persAF) remains a challenge 
due to an incomplete understanding of the underlying 
pathophysiology of the arrhythmia [1].  

Different methods have been introduced to identify 
atrial regions responsible for AF perpetuation to guide 
ablation – such as functional re-entries and fractionated 
atrial electrograms (AEGs) [2, 3]. The latter is of particular 
interest during persAF ablation: fractionated activity has 
been linked to i) random activations from meandering 
wavelets that propagate through the atria; ii) underlying 
anisotropic conduction in the atrial remodelled tissue and; 
iii) the occurrence of wave breaks or wave collisions in the 
atrial tissue [4].  

Commercial electroanatomic mapping systems 
introduced dichotomous criterion for automated AEG 
classification based on the absence or presence of 
fractionation. This strategy, however, has been shown 
insufficient for persAF ablative therapy, resulting 
inconsistent outcomes possibly due to methodological 
heterogeneities [4], and poor understanding of the 
underlying AF dynamics [5-7]. Consequently, the 
simplistic approach for AEG classification proposed by 
commercial systems might be incomplete to properly 
characterise the underlying atrial substrate during persAF.  

 
1.1. Unsupervised classification 

Unsupervised classification is often used for unlabelled 
data – i.e., data without defined categories or groups. It can 
be used to cluster groups of similar archetype within the 
data based on predefined characteristics of the data 
distribution [8].  

The k-mean algorithm is one of the many available 
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methods for unsupervised classification. K-mean divides N 
observations with P dimensions (variables) into k clusters 
– defined by the user – so that the within-cluster sum of 
squares is minimized. The algorithm separates the data into 
spherical clusters by finding a set of cluster centres, 
assigning each observation to a cluster based on the 
squared Euclidean distance as the measure of dissimilarity 
between a data point and the cluster centres, determining 
new cluster centres, and repeating this process [9]. 

In the present work, we sought to investigate 
unsupervised k-mean classification in a three-dimensional 
space defined by the attributes calculated by a currently 
available commercial system. Possible sub-groups of 
persAF AEGs were investigated, expanding the traditional 
dichotomous AEG classification proposed by the 
commercial system. 

 
2. Methods 

2.1. Electrophysiological study 

The population consisted of 14 patients referred to 
Glenfield Hospital, UK, for catheter ablation of persAF. 
All patients were in AF at the start of the procedure. All 
procedures were performed with full informed consent. 

3D LA geometry was created within Ensite NavXTM (St. 
Jude Medical, St. Paul, Minnesota) using a deflectable, 
variable loop circular PV mapping catheter (Inquiry 
Optima, St. Jude Medical). Sequential point-by-point 
bipolar AEGs were collected from different atrial regions. 
In all cases, PVs were silent and all patients were in AF 
during signal collection. Sinus rhythm following AEG-
guided ablation was achieved in all cases. 

 
2.2. Signal processing 

A total of 3745 AEGs were collected (3413 from the left 
and 332 from the right atrium), with a sampling frequency 
of 1200 Hz, and embedded band-pass filtered within 30 – 
300 Hz. Each AEG was exported from NavX with 8 s. A 
stationary wavelet transform filter was implemented based 
on a previously described method to further reduce both 
baseline oscillations and high frequency noise [10]. For 
baseline oscillations, the AEGs were decomposed with 
Daubechies D11 wavelet into details 8, corresponding to 
the frequency band between 0 – 2.34 Hz, which was set to 
zero. For the high frequency noise, the AEGs were 
decomposed with Haar wavelet into details 7. Level 1 
corresponds to frequency band between 300 – 600 Hz, 
which has no electrophysiologic relevance. Hence, it was 
assumed that the presence of a white noise – that affects 
the frequency spectrum homogeneously – would be more 
evident in this frequency band with variance 𝜎௪ଶ . An 
adaptive threshold was calculated for each AEG, 
accordingly: 
 

𝑇௥ ൌ 𝜎௪ଶ√2 ∙ ln𝑁 (1)
 
where N is the length of the AEG. The threshold Tr 
represents the amplitude level of the assumed white noise 
distributed in the AEG. This threshold was then applied in 
all the levels of the filter bank. At each level, amplitudes 
higher than the threshold were conserved, while 
amplitudes below the threshold were suppressed. The 
resulting filtered AEGs were computed with the levels 
after thresholding with the inverse wavelet transform. 

 
2.3. Data analysis 

The CARTO criterion (Biosense Webster, Diamond 
Bar, California) for AEG classification has been explained 
previously [4]. Briefly, the algorithm identifies 
fractionated intervals based on peaks and troughs on the 
AEG that occur within a certain amplitude and duration. 
The algorithm then calculates the number of marked 
intervals, the average of their duration and the shortest 
interval (respectively, the Interval Confidence Level – 
ICL; Average Complex Interval – ACI; and Shortest 
Complex Interval – SCI). These attributes were calculated 
on the filtered AEGs, followed by the automated 
classification considering the CARTO criterion: ICL≥12 
(normalised for 8 s), ACI≤82 ms and SCI≤58 ms [4]. The 
CARTO attributes were used to create a three-dimensional 
space distribution in which k-mean with Euclidean 
distance criterion was implemented to identify sub-groups 
of AEGs. The groups found by the k-mean were then 
compared with each other.  

 
2.4. Statistics 

All values are expressed as median ± interquartile 
range. Non-parametric unpaired sets of data were analysed 
using the Mann–Whitney test, while non-parametric 
unpaired multiple data were analysed using the Kruskal-
Wallis test with Dunn’s multiple comparisons. Similarities 
between two probability distributions was estimated with 
the Kullback-Leibler (KL) divergence. P-values of less 
than 0.05 were considered statistically significant. 

 
3. Results 

K-mean with k=5 was implemented on the distribution 
formed by the CARTO attributes, as illustrated in Figure 
1. 630 AEGs (17% of the total) were classified as 
fractionated according to the CARTO criterion, while 3172 
(83%) were classified as normal.  

The AEGs classified as normal by CARTO were further 
divided in four groups (groups 1 to 4) by the k-mean, each 
group with very specific characteristics. Group 1 (43%) 
represents normal AEGs with low ICL, high ACI and SCI. 
Groups 2 (9%) and 3 (9%) have shown similar low ICL,  
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Figure 1. A. Left-hand side: the three-dimensional space distribution of the attributes calculated by CARTO (ICL, ACI and 
SCI) color-coded with the dichotomous AEG classification from the CARTO criterion (normal vs fractionated AEGs). 
Centre: the same three-dimensional space distribution color-coded with the clusters found by the k-mean (k=5). Right-hand 
side: illustration of typical AEGs found in each group with the annotations for the AEG classification from the CARTO 
criterion. B. The attributes calculated by CARTO (ICL, ACI and SCI) for normal and fractionated AEGs. C. The attributes 
calculated by CARTO (ICL, ACI and SCI) for each cluster found by the k-mean (k=5). The three attributes were 
significantly different among the five groups (P<0.0001), except ICL between Groups 3 and 4 (P>0.999) and SCI between 
Groups 3 and 5 (P>0.999). **** P<0.0001. 
 
 

 

but Group 3 has shown AEGs with shorter activation 
intervals when compared to Group 2. Group 4 (23%) 
suggests moderated fractionation, with high ACI but low 
SCI. Group 5 (15%) presented very similar distribution 

compared to the AEGs classified as fractionated by 
CARTO (KL=0.11). 83% of these AEGs coincided with 
the CARTO classification for fractionation. AEGs in this 
group have shown very high ICL, low ACI and SCI. The 
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three attributes were significantly different among the five 
groups (P<0.0001), except ICL between Groups 3 and 4 
(P>0.999), and SCI between Groups 3 and 5 (P>0.999). 
Other values for k have been tested, with the most evident 
impact on k-mean classification within groups 1 to 4, i.e., 
the AEGs classified as normal by CARTO would be 
divided in more or less groups according to k. For instance, 
for k=4, the AEGs classified as normal by CARTO were 
further divided in 3 more groups; for k=6, the AEGs 
classified as normal by CARTO were further divided in 5 
groups, and so on. For k ≥ 6 the groups became less 
separable. In all cases, group k was mostly unaffected. 
 
4. Discussion and conclusion 

In the present work, we have implemented a simple 
unsupervised classification method that revealed possible 
sub-groups of AEGs further to the traditional the 
dichotomous AEG classification proposed by commercial 
systems. AF is regarded as a complex arrhythmia, in which 
different mechanisms are likely to participate in persAF 
perpetuation linked to remodeled substrate, such as the 
rapidly discharging automatic foci [11]; the multiple 
wavelets hypothesis [12]; the single reentrant circuit with 
fibrillatory conduction [13]; the conduction dissociation 
between epicardial and endocardial layers [14]; and 
functional reentry resulting from rotors [3]. This results in 
an intricate structure of atrial activations such that the 
simplistic approach for AEG classification proposed by 
commercial systems might be insufficient to detect this 
complexity. Our results support the existence of sub-
groups of AEGs with distinct morphological 
characteristics during persAF, and that the dichotomous 
AEG classification proposed by commercial systems is 
insufficient to discriminate them. More specifically, the 
AEGs classified as normal by CARTO have been divided 
in four sub-groups of AEGs by the k-mean (for k=5), each 
of which with particular characteristics that could represent 
different electrophysiological mechanisms. This could 
provide a more detailed characterization of the atrial 
substrate during persAF ablation in future studies. 
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