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Abstract 

This study investigates the use of pulse 

photoplethysmography (PPG) for the detection of sleep 

apnea and its added value to oxygen saturation (SpO2) 

based detection. PPG-time series known to be modulated 

by both respiration and the autonomous nervous system 

were derived: pulse rate, amplitude and width variability, 

slope transit time, maximal pulse upslope and the area 

under the PPG peak. Moreover, the instantaneous power 

in the high and low frequency band of the pulse rate was 

estimated using a point-process model. For all extracted 

time series, five features were computed over a 1 minute 

interval: the mean, minimum and maximum value, 

standard deviation and gradient. Feature selection 

resulted in the 6 most discriminative features for PPG 

based detection of apneic minutes. These features were 

used as input for a least-squares support vector machine 

classifier, which was applied on polysomnographic data of 

102 subjects suspected of having sleep apnea-hypopnea 

syndrome. A classification accuracy of 68.7 %  was 

achieved. When SpO2 features were added to the classifier 

the accuracy increased to 83.4 %, which is only slightly 

higher than the 82.2 % obtained using only SpO2. These 

results show the potential of PPG features for sleep apnea 

detection, however, their added value to SpO2 is limited.  

 

 

1. Introduction 

Patients with sleep apnea-hypopnea syndrome (SAHS) 

suffer from complete or partial cessations of breathing 

during their sleep. These events are respectively called 

apneas and hypopneas. They are often accompanied with 

oxygen desaturations and/or arousals. Although these 

arousals restore normal breathing, they disturb the normal 

sleeping pattern and often cause excessive daytime 

sleepiness. Additionally, in the long term SAHS has been 

shown to increase the risk to develop cardiovascular 

diseases [1]. Therefore, timely diagnosis and treatment of 

SAHS is important.  

SAHS is the most common sleep-related breathing 

disorder and recent studies have shown a high prevalence 

in the general population, up to 23.4 % of women and 

49.7% of men are affected by SAHS [2]. However, a large 

portion of these people remain undiagnosed. This is mainly 

due to the fact that the standard SAHS diagnosis is based 

on an overnight assessment in the hospital, called 

polysomnography (PSG). This method is cumbersome, 

costly and not applicable to screen large populations.  

Therefore many researchers have focused on the 

automatic detection of SAHS using signals which can 

easily be measured in a home environment. The most 

studied modalities are the Electrocardiogram (ECG) and 

the oxygen saturation (SpO2), which obtain good 

performances [3-4]. The SpO2, however, has as a 

disadvantage that only events accompanied with an oxygen 

desaturation can be detected. Other modalities should be 

added to detect events without desaturation.  

Since the pulse oximeter used to measure the SpO2 also 

records the pulse photoplethysmography (PPG) signal, this 

signal seems to be the first choice to improve the SpO2 

based detection. Previous studies have already used the 

PPG signal for the detection of sleep apnea [5-6], since 

parameters linked to autonomic arousals and respiration 

can be extracted from the signal.  

In this study, a PPG based apnea detector will be 

developed using features from literature combined with 

newly defined features based on the point-process model 

of human heart beat interval dynamics to estimate the 

autonomic nervous system activity [7-8]. Moreover, the 

PPG based model will be combined with SpO2 based apnea 

detection and the performances of the unimodal and 

multimodal classifiers will be compared.  
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2. Methodology 

This section gives an overview of the used methods:  the 

dataset will be described, followed by an explanation of the 

SpO2 and PPG processing and ending with the feature 

selection and the construction of the classifier.  

 

2.1. Data 

The used dataset consists of PPG and SpO2 signals 

extracted from full night PSGs recorded at the sleep 

laboratory of the University Hospitals Leuven. The signals 

were sampled at 500 Hz. 102 patients suspected of having 

SAHS were included in the study, they had an average age 

of 50 ± 12 years and a BMI of 30 ± 6 kg/m2. 72 % of them 

were men and 55 % were former or current smokers.  

Sleep specialists manually annotated the PSG studies 

according to the AASM 2012 rules [9], all apneas and the 

hypopneas accompanied by either an oxygen desaturation 

(≥ 3 %) or an arousal were labelled. For the remainder of 

the text, ‘apneic events’ will be used as a general term 

containing both apneas and hypopneas, unless otherwise 

stated. The apnea-hypopnea index (AHI) is used as 

severity index for SAHS and was calculated as the amount 

of apneic events per hour of sleep. The average AHI in the 

dataset was 25 ± 22, 57 % of the subjects had an AHI larger 

than 15, and are thus diagnosed with SAHS. The data was 

split into 1 minute segments, that were labelled apneic if 

they contained at least 10 seconds of apneic events, which 

corresponds to the minimum duration to be annotated [9]. 

A training set of 71 recordings was selected as centers 

of k-medoids clustering on the patient characteristics. The 

remaining 31 recordings were used as independent test set. 

 

2.2. SpO2 processing 

For the SpO2 processing and feature extraction, the 

workflow described in [4] was used. Oxygen desaturations 

were detected and six features were extracted from each of 

them: the SpO2 variance, the amplitude of desaturation, the 

length of the resaturation period, the amplitude of the 

upward and downward phase rectified signal averaging 

(PRSA) [10] curves, and the timing of the first peak in the 

autocorrelation of the SpO2. These features were then used 

to classify the desaturations as apneic or not.  

In this study 1 minute segments were analyzed, so each 

desaturation needs to be linked to a segment, taking into 

account the delay of about 30 seconds between the start of 

the apnea and the start of the desaturation [4]. Therefore, 

desaturations were linked to the segment if they start 

earlier than 30 s after the end of the segment and end later 

than 30 s after the start of the segment. The segment got 

the SpO2 feature values of the linked desaturation with the 

highest probability to be apneic. When no desaturation was 

linked to a segment, the SpO2 features were set to NaN.  

2.3. PPG processing 

The PPG signals were preprocessed by applying a low-

pass filter with a cut-off frequency of 35 Hz [6]. Next, the 

PPG peaks were detected by applying a linear filtering 

transformation to emphasize the peak slopes, followed by 

an adaptive thresholding [5]. From each detected peak, 

several points of interest were extracted which will be used 

to compute the PPG time series, see Figure 1. The peak 

apex point (nA) was extracted, as well as its basal (nB) and 

mid-point (nM). Moreover, the first derivative of the signal 

was used to compute the peak onset (nO), end point (nE), 

and the slope end point (nEs) [6]. 

Figure 1. Overview of the PPG peak point delineation and 

feature extraction.  

 

From these peak points 6 PPG time series were 

computed. The pulse rate variability (PRV) was computed 

as the inverse of the time between consecutive nM’s; the 

pulse amplitude variability (PAV) as the amplitude 

difference between nB and nA; and the pulse width 

variability (PWV) as the time between nE and nO.  The 

slope transit time (STT) was defined as the time in between 

nEs and nO. Additionally, the maximal pulse upslope and 

the area under the peak were computed, as can be seen on 

Figure 1. These time series were all resampled to 4 Hz.   

The autonomic nervous system can be assessed by 

studying the low frequency (0.04-0.15 Hz, LF) and high 

frequency power (0.15-0.4 Hz, HF) of the PRV. During 

apneic events, however, there is a close succession of 

parasympathetic and sympathetic changes [1]. Therefore it 

is interesting to study these parameters on short time 

intervals. To do so, the point-process model of human heart 

beat interval dynamics developed by Barbieri et al. [7] was 

applied to the PPG peak mid-points nM, as surrogate of the 

R-peaks in the ECG. This model uses a history-dependent 

inverse Gaussian distribution to model the RR-interval 

time series and provides an instantaneous estimate of the 

heart rate LF power, the HF power and the LF/HF index 

[7]. Again a sampling frequency of 4 Hz was used. 

The 9 computed PPG-time series were post-processed 

using a median absolute deviation (MAD)-based outlier 

detection rule [5]. Outliers longer than five times the 

average heartrate interval were removed, those shorter 

were interpolated. After outlier detection, 1-min averaged 

features were computed from the time series. The 

minimum, maximum and mean value, the standard 
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deviation and the gradient during the 1-min segment were 

extracted from each of the time series. This resulted in a 

total of 45 PPG features. 

 

2.4. Feature selection and classification 

From the 45 PPG features, the most discriminative ones 

to separate apneic minutes from normal breathing minutes 

were selected. A similar feature selection workflow as in 

[4] was applied: first highly correlated features were 

removed, then the minimal redundancy maximal relevance 

algorithm was used to further reduce the feature set to 10 

features [11]. Finally any remaining redundant features 

were removed using a backwards wrapper combined with 

the classifier explained below.  

Using the selected features, a fixed-size least-squares 

support vector machines (FS LS-SVM) classifier using an 

RBF kernel was built to classify segments as apneic or 

normal breathing [12]. In order to balance the training set, 

an equal number of segments from the apnea and normal 

class were included per training patient. All segments from 

the smallest class were included, the segments from the 

largest class were selected as the centers of k-medoids 

clustering on the feature set. The LS-SVM hyper 

parameters were optimized using 10-fold cross validation 

on this training subset.   

This classifier was first trained on both the PPG and 

SpO2 features separately, to obtain the classification 

performance per modality. Afterwards the classifier was 

trained on a feature set containing both the PPG and SpO2 

features.  

 

3. Results 

The PPG feature selection resulted in a subset of 6 

features: the minimum of the PAV, standard deviation and 

mean of the PRV, standard deviation of the PWV and the 

minimum and mean value of the LF/HF power of the pulse 

rate. Boxplots of four of them are depicted in Figure 2, 

comparing the normal and apneic segments. 

The obtained classification performances on the test set 

of the PPG, SpO2 and combined classifier are presented in 

Table 1. 

 

4.  Discussion 

When observing the selected PPG features in Figure 2, 

a decrease in PAV is seen during apneic minutes. This 

decrease has been linked to vasoconstriction and arousals 

due to apneic events [5]. Moreover, an increased standard 

deviation of the PRV is observed indicating autonomic 

nervous system activations and the increased LF/HF power 

points towards an increased sympathetic activation. 

Using the six PPG features, the PPG-based apnea 

classifier was trained. The PPG classification performance, 

Table 1. Classification performances on the test set. 

Accuracy (Acc), sensitivity (Se), specificity (Sp), area 

under the curve (AUC) and positive predictive value (PPV) 

are all given in percentages.  

 

Classifier  Acc  Se  Sp  AUC  PPV  

PPG 68.7 69.1 68.6 74.8 42.4 

SpO2 82.2 75.3 84.5 87.6  62.6 

PPG+SpO2 83.4 73.7 86.6 88.4  64.8 

Figure 2. Four of the selected PPG features for normal 

breathing segments (0) and apneic segments (1). Minimum 

PAV (a.u.), standard deviation of the PRV (1/s) and PWV 

(s), and the mean LF/HF power (a.u.) are depicted. Due to 

space limitations, the other features are not shown.  

 

given in Table 1, is lower than in previous studies in 

literature. We achieve an accuracy of 68.7 %, whereas in 

[6] an accuracy of 72.66% was obtained. In this study, 

however, only obstructive apneas were considered. Our 

study considers all types of apneic events, including central 

events and also hypopneas which only have a partial 

obstruction of the airway and are thus more difficult to 

detect. Only 11.9 % of the apneic minutes in this study 

include obstructive apneas. If only these event minutes are 

taken into account, the accuracy, sensitivity, specificity 

and AUC of PPG based detection rise to, respectively, 76.2 

%, 67.9 %, 76.5 % and 78.0%. The sensitivity and AUC 

further increase when central and mixed apneas are added, 

probably due to the increase in available training data. An 

accuracy of  74.8 % is then achieved with a sensitivity, 

specificity and AUC of, respectively, 73.8 %, 74.9 % and 

80.4 %.  

Moreover, the performance parameters vary a lot 

between patients. If a patient has only few apneic events, 

they are often more isolated, have a less severe autonomic 

response and are therefore more difficult to detect. When 

apneas are grouped together, they are more easily to detect 

and thus higher sensitivities are obtained. Another 

observation that can be made is the low positive predictive 

value (PPV) of 42.4 %. Previous studies also encountered 

the same problem. A lot of sympathetic activations are 

detected, which are not linked to annotated apneic events. 

These could be due to subclinical apneas which are too 

short to be scored according to the AASM rules, or other 

causes such as movement of the patient. In [6], it was 
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investigated whether these false positives occurred more 

often during REM sleep, which was not the case. In this 

study the patients were on average in REM sleep for 14 % 

of the recordings. During this time 20 % of all apneic 

minutes and 20 % of all false positives occured. There is 

thus no excessive amount of false positive detections 

during REM sleep. Therefore, REM sleep autonomous 

nervous system variations cannot account for the low PPV.  

The SpO2 based classifier clearly outperforms the PPG 

based classifier with an accuracy of 82.2 %. The SpO2 

signal, however, is not always available in wearable PPG 

measurement systems. If both modalities are available, 

they can be combined, then an accuracy of 83.4 % is 

obtained, which is only slightly better than taking only the 

SpO2 features into account.  These results show that the 

PPG features are promising for the detection of sleep apnea 

events, however, when the SpO2 signal is available, the 

added value of the PPG is limited.  

One of the main objectives was to improve the 

sensitivity of the SpO2 based apnea detector by adding the 

PPG features, as extra apneic events which are not linked 

to oxygen desaturations could then be detected. In this 

dataset, during 8.8 % of all apneic minutes no desaturation 

of at least 1 % could be observed, these apneic minutes 

could therefore not be detected using the SpO2 signal.  The 

low PPV of the PPG based classifier, however, makes it 

impossible to improve the sensitivity without greatly 

decreasing the specificity of the classifier.  

These results might still be improved if extra PPG 

features are considered, investigating for example the 

dynamics and nonlinear properties of the PPG signal. 

Moreover, the full night recording is now processed, 

including periods where the patient lies awake during the 

night. Implementing some PPG-based sleep staging could 

avoid false positives during wake, which now represent 

22.4 % of the false positives for PPG based detection and 

49.2 % for SpO2 based detection.  

 

5.  Conclusion 

This study investigated the use of PPG derived features 

for the detection of apneic minutes in overnight recordings 

and their added value compared to SpO2 based features. 

The PPG based results are promising, but the positive 

predictive value should still be improved to be useful in 

practice. Moreover, the PPG features have shown to have 

a limited added value compared to the SpO2 based features. 
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