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Abstract

Cardiovascular diseases are the number one cause of
death in the world. The application of automatic process-
ing algorithms can provide important information about
these heart diseases. However, the design of these algo-
rithms can be challenging due to the morphological varia-
tions in ECG signals, specifically in the T-wave-offset. This
study proposes a comparison of several T-offset detection
algorithms on healthy subjects and patients suffering from
cardiac diseases. Seven state of the art algorithms were
selected for implementation and were evaluated using the
same dataset and benchmark to provide a fair compari-
son. Although no algorithm performs with 100% accuracy
for all patients, most can perform well with regards to the
healthy patients, with two algorithms having a high per-
formance, above 70% accuracy, on all patients.

1. Introduction

Cardiovascular diseases (CVD) is the leading cause of
death in the world, accounting for 17.7 million deaths
in 2015 [1]. Therefore, cardiac research is important to
improve cardiovascular diagnosis, specifically automatic
processing of the ECG. By detection and delineation of
the waveforms of the ECG: P-wave, QRS-complex and T-
waves, their duration and amplitude can be found and used
to discover heart abnormalities [2]. Due to the extent of
conditions which cause irregular T-waves, the research for
T-wave detection algorithms is gaining significance within
ECG diagnostics [3]. The T-offset is for many diseases an
important fiducial point to detect, as well as the most diffi-
cult. For instance, coronary heart disease can cause a pro-
longed QT interval (Q-onset to T-offset) usually indicating
increased vulnerability to malignant ventricle arrhythmias
and sudden death [4].

With a lot of variation occurring in ECG signals, the
ability to create a generic automatic algorithm for detecting
the fiducial points of each wave is a difficult task. Many al-
gorithms have been designed over the years which can de-
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tect the T-offset [7—12]. However, they are typically vali-
dated on patients with healthy heart signals where the mor-
phologies of the waves are standard [5]. The aim of this
study is therefore to identify how these algorithms perform
on patients who are suffering from different cardiac dis-
eases and how they perform in comparison to each other.

2. Methods

Seven state of the art T-offset detection algorithms were
selected for implementation based on the type of method
being used and the clarity of techniques presented in the
paper. Each algorithm is explained in a short summary
stating the methods used and presented under the lead au-
thors name. Due to some ambiguity about the technical
details of the methods used, assumptions have been made
which may have caused slight changes in the algorithms.

2.1. 1994 Laguna

Based on the previous paper of Laguna 1990 [6] this
paper takes the same concept of filtering and threshold-
ing with some alterations making it applicable for multi-
lead waveform determination. The T-offset is determined
as the point which crosses a threshold to the right of the
T-peak. The threshold is determined by the equation:
Threshold = Der(pk)/k, where k is a set value which
was experimentally adjusted by the authors and chosen as
it gave the best performance. Der(pk) is the value of the
derivative signal at time instance of the adjacent peak pk
to the right of the T-peak. The code was supplied via Phy-
sioNet [7].

2.2. 1999 Daskalov

This algorithm considers a different approach for find-
ing the fiducial points of the T-wave, by using a concept
of ”wings” which is a method of taking two adjacent seg-
ments of equal sizes from a point and shifting through an
interval. To find the T-offset, two points are calculated.
First T;,, which is located in a window 10ms from the
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peak, is found as the point where (.S;_5—5;)(S;—Si+5) <
3 %1076, S is the signal at the i‘" position. The amplitude
of the wave is then calculated by taking absolute value of
the height of the T-peak minus the height of 7. Using this
information the equation Ty = 0.2 * Tj,,,, can be applied
and a window from T to T}, is taken. The wings function
is then applied with 10ms segments, and the minimum of
the function is taken as the T-offset [8].

2.3. 2004 Last

Three approaches were proposed within this paper to al-
low for self-comparison. Since the focus is on detecting
the T-offset fiducial point, only two out of the three ap-
proaches were implemented: the Non-Syntactic Approach
and Multi-Component Cross Correlation Approach (MCC)
[9].

2.3.0.a Non-Syntactic Approach For this approach, the
T-offset is found by taking a window from the T-peak and
calculating the gradient of the signal. The T-offset is then
determined to be the point when the signal goes below a
threshold of 25% of the maximum gradient of the T-wave,
for a duration of 25ms.

2.3.0.b  MCC Approach The second approach of this
paper then uses templates of the T-wave and calculates the
cross correlation compared with the signal. The point with
the best correlation between the beat in the signal and the
template, provides the location of the T-wave for every
beat. It is assumed that the end location of the template
is the T-offset when applied to the signal.

2.4. 2011 Vazquez-Seisdedos

This method for T-offset detection is based on calcu-
lating the area of a trapezium with three fixed vertexes,
(Tms Ym)s (@r,yr)s (Tr,Ym) and with one mobile one
(z4,y;). On a beat for beat process: the point (z,,, Ym)
is found taking a window from the T-peak to 200ms after,
and is defined as the point which has the highest absolute
derivative. (x,,y,) is then found in a window of 200ms
to 400ms from the peak and is the point where the derived
signal is closest to zero. (z;,¥;) is then moved between
(Tm,Ym) and (x,,y,). The area is calculated for each
sample point via the equation: A = 0.5(y,, — yi)(2z, —
X; — T ). The T-offset is then identified as the point with
the maximum area [10].

2.5. 2013 Madeiro

The algorithm of Madeiro [11] uses mathematical mod-
els of a skewed Gaussian function. A template is created
based on a Gaussian function which is modified by a math-
ematical procedure to insert asymmetry to be able to model

the T-wave. Cross-correlation is then used to find the T-
waves and by locating the maximum amplitude, the T-peak
is found for each beat. Using the T-peak locations, the T-
offset is then found by using a slightly adapted version of
the Trapezium Area method proposed by Vazquez.

2.6. 2008 Cabasson

This paper presents a Time Delay Estimation technique
of each T-wave with respect to a template wave, the
method follows an improved version of Woody’s method
[12]. The paper simply describes the theoretical formula-
tion of the improved Woody’s method for TDE to show
that the initial Woody’s method is not optimal. The code
that was obtained is known to be a modification of the
original one, with instead of the user providing manually
a window of analysis for the T-wave, the code now uses
a Gaussian fitting of the averaged T-wave obtained in the
signal.

3. Databases

The algorithms selected were evaluated on three data
sets. First, using an ECG simulator, constructed by the
principle of Fourier series, which was developed and ob-
tained via MathWorks [13]. This allows ECG recordings
to be produced without the corruption of noise or distur-
bance that often occur from machines. For the analysis
of the algorithms, the simulator was used to create 15 dif-
ferent ECG recordings: with different heart rates, T-wave
amplitudes and white noise. Therefore, each algorithm can
be assessed on which characteristics cause a reduction in
performance.

The second database used was PhysioNet’s PTB Diag-
nostic ECG Database, which contains 268 records from a
range of different aged patients both male and female. The
recordings contain various diagnostics, and each were put
into one of the three main datasets: Healthy Patients, My-
ocardial Infarction (MI) and Other [14]. The database was
interpreted by the Hannover ECG-System (HES) to obtain
the annotations for the fiducial points of each wave in each
patients recording [15].

To further validate each algorithm the QT database was
used [16], which contains 105 ECGs with a wide variety
of QRS and ST-T morphologies, including signals from
the MIT-BIH Arrhythmia Database. Out of the 105, 79
ECGs were used where the beats were manually annotated
by cardiologists. Therefore, providing a database which
can confirm the authenticity of the algorithms without the
potential of incorrect results due to the reference annota-
tions.

For validation of all algorithms lead V3 was chosen, due
to its position being similar to the Medtronic Reveal LINQ,

Page 2



which is an implantable heart monitoring system used for
cardiac diagnosis.

4. Results

Performance was assessed in terms of time mismatch
between detections and annotations. A detection was con-
sidered correct if it fell in a window of 50ms before or
after the annotation. Currently, no standard position for
the T-offset is confirmed, as some cardiologists state the
position to be on the isoelectric line following the T-peak,
whilst others state that it is located on the down slope of
the wave. Therefore, this window was chosen to allow for
the algorithm to detect the T-offset in a different location
than where the fiducial point is, whilst still being defined
correct.

T-wave-offset for Simulated Data
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Figure 1. Bar Chart showing the percentage of recordings
where the T-offset was correctly identified for each beat for
the Simulated Data

The results in Figure 1 shows for every algorithm the
percentage of simulated ECG recordings where the T-
offset was correctly identified for every beat. Addition-
ally, Figure 2 shows the same information but for the
PTB database, with the database split into three categories:
healthy, MI and other cardiac diseases.

T-wave-offset for PTB Database
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Figure 2. Bar Chart showing the percentage of recordings
where the T-wave offset was correctly identified for each
beat for the PTB Database

For some patients it occurred that a lot of the beats were
accurately detected, however not all of them. This was
specifically seen in the QT database. Therefore, in Table
1, the mean and standard deviation of the number of beats
where the T-offset was correctly identified over all patients
is given for all databases.

Table 1. Mean and standard deviation values for the per-
centage of correctly annotated beats over all patients in
each dataset

Simulated  Healthy MI Other QT
Vazquez  20+41 88+27 46+43 66+40 58125
Laguna 64+44 69+38 66+41 63+41 34+36
Dasklov 33+49 95+16 714+38 72+37 40423
Cabasson 87+35 98+13 92424 96+15 71424
Last (i) 73+46 32+£41 16+30 34+40 40+33
Last (ii) 100+ 0 1000 9945 98+7 T9+25
Madeiro 33 £+ 40 0+1 16+£35 13+30 28+27
S. Discussion

From the simulated data results it can be seen that three
algorithms were able to correctly identify every beat for
most of the simulated data records, with Last(ii) outper-
forming all with its ability to correctly identify the end for
every record. It appears that four algorithms do not per-
form so well, typically when the T-wave is negative or has
a very low amplitude. This is due to reasons such as the
algorithms morphology function defining the wave with a
different characteristic than it has.

Similarly, the results from the PTB database also show
Cabasson and Last(ii) performing better than the other al-
gorithms with above 75% accuracy on all patients. How-
ever, unlike with the simulated data, Last(i) is not perform-
ing well. In fact, as with the other algorithms performing
badly in the simulated data, this algorithm is unable to cor-
rectly identify the T-offset if the wave is negative. Last(i)
is only correctly identifying the T-peak, if it is positive, as
it is found by taking the maximum of the wave. There-
fore, preventing the ability to correctly annotate negative
T-waves.

From this databases it can also be seen that most al-
gorithms perform better on healthy patients, with little
noise and positive T-wave morphologies. With on aver-
age 79 + 26 of all T-offsets beats were correctly annotated
for healthy patients, 63 & 28 for MI patients and 71 £ 21
for patients with other cardiac diseases.

The table stating the mean and standard deviations
of how many beats were correctly annotated, also con-
firms that two algorithms outperform the others for every
database, with Last(ii) providing the best results overall.
It can be seen that the algorithms are performing worse,
when analysed on the Simulated and the QT database than
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the PTB. The simulated data causes issues for the algo-
rithms due to its non smooth wave formations. The de-
crease in performance on the QT database can be deter-
mined as the difficulty of determining the fiducial points
on patients signals, where the morphologies and character-
istics of the waves are irregular. This can be seen by Figure
3 which shows 5 beats from one patient and the trouble oc-
curring in three algorithms due to the irregularity of the
recording.

Toffet ducial - QT database.
T T
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Figure 3. ECG extract from QT Database showing the
T-offset detection points from three algorithms: Vazquez,
Laguna and Last(ii)

This study presents the following limitations: the algo-
rithms were not necessarily implemented as was intended
by the author, causing the algorithm to not perform as ex-
pected. Furthermore, a slack window was chosen which
may present a simplified look on the performance of the
algorithms. However, this was seen as necessary when
working on patient recordings with a range of heart rates.

6. Conclusion

From this study it can be said that all algorithms per-
form worse when annotating the T-wave for patients with
cardiac diseases. This is expected due to the problems oc-
curring with the algorithms, when the T-wave has irregular
morphologies. From the results it can be seen that the algo-
rithms which contain a method to determine the morphol-
ogy of the wave or create a template which forms the shape
of the wave, work better for the different morphologies oc-
curring due to the various diseases. Whereas the other al-
gorithms typically are only beneficial for positive T-waves.
Two algorithms, Last (ii) and Cabasson, were able to have
a high performance on all datasets, with above 70% ac-
curacy, on all patients. These algorithms create templates
that matches the morphology of the wave and calculate the
fiducial point with the correct morphology found, causing
better performance. However, with the algorithms still not
having a high accuracy for all patient signals with diseases,
it may not be beneficial to use them in medical applications
at the moment. Therefore, it is important to continue the
research and determine how to improve the algorithms to
achieve a higher accuracy.
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