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Abstract

The heart rate (HR) response to paced deep breathing
(DB) is a common test of autonomic function, where the
scoring is based on indices reflecting the overall heart
rate variability (HRV), where high scores are considered
as normal findings but can also reflect arrhythmias. This
study presents a method based on hyperdimensional com-
puting for assessment of the similarity between feature vec-
tors derived from the HR and breathing signals. The pro-
posed method was used to identify subjects where HR did
not follow the paced breathing pattern in recordings from
DB tests in 174 healthy subjects and 135 patients with
cardiac autonomic neuropathy. Subjects were classified
in 4 similarity classes, where the lowest similiarity class
included 35 patients and 3 controls. In general, the au-
tonomic function cannot be evaluated in subjects in the
lowest similarity class if they also present with high HRV
scores, since this combination is a strong indicator of the
presence of arrhythmias. Thus, the proposed vector-based
similarity analysis is one tool to identify subjects with high
HRV but low cardiorespiratory synchronization during the
DB test, which falsely can be interpreted as normal auto-
nomic function.

1. Introduction

This paper explores principles of hyperdimensional
computing for similarity analysis of heart rate variabil-
ity (HRV) and respiration (RESP) signals during the deep
breathing (DB) test. The test is rather simple: during one
minute, a subject takes six paced deep breaths while HRV
and often RESP signals are recorded. The autonomic func-
tion is normally scored using the total power of recorded
HRV signal or by the deep breathing index (DBI), which is
calculated as the average of the heart rate difference in each
breathing cycle. It is important to note that these indices
assume that RESP and HRV signals are synchronized with
each other, since the actual pattern of the heart rate fluctua-
tions is ignored. This assumption may cause issues: for ex-

ample, if there are subjects presenting with subtle arrhyth-
mias during the DB test. In such cases, the DB test is not an
adequate test for evaluating autonomic function. In order
to identify such subjects, we propose to explore methods
capable of analyzing cardiorespiratory synchronization. In
particular, the paper studies the similarity between HRV
and RESP signals from DB tests using feature-based anal-
ysis, where feature vectors (patterns) are mapped to hy-
perdimensional space (HD space) [1]. Computing in HD
space operates with vectors of very high dimension and
allows a computationally efficient analysis of complex de-
pendencies between a large number of features. Patterns in
HD space are then classified into different regions of car-
diorespiratory synchronization/desynchronization using k-
means clustering.

2. Recordings from patients and controls

HRV (derived from a single-channel ECG) and RESP
signals were recorded during DB tests (6 breaths/min dur-
ing one min, corresponding to 0.1 Hz) in the supine posi-
tion. Data consisted of 174 healthy controls (53% men,
mean age 49 years, range 22-84 years) and in 135 pa-
tients (51% men, mean age 51 years, range 26-76 years)
with different degrees of cardiac autonomic dysfunction
(CAN) and arrhythmias. The CAN group consisted of pa-
tients with the disease transthyterin amyloidosis. These pa-
tients were selected since they often present with reduced
HRV due to cardiac autonomic dysfunction, but falsely in-
creased HRV due to subtle cardiac arrhythmias are also
common in these patients [2].

3. Methods

Heart beats were detected in the recorded ECG:s (sam-
pled at 500 Hz) using a threshold-based algorithm. Spu-
rious ectopic beats were removed by interpolation, but
recordings with frequent ectopic beats were not edited,
which was the case in less than 10 patients. HRV sig-
nals were constructed from RR intervals by cubic spline
interpolation and resampling at 2 Hz. The overall response
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in heart rate was quantified by the commonly used deep
breathing index (DBI), calculated as the average of the
heart rate difference in each breathing cycle. DBI was age-
adjusted based on linear regression analysis of logarithmi-
cally transformed data from controls, from which Z-scores
were determined as previously described in [3].

Fourier series (FS) modeling was used to analyze the
characteristics of the HRV and RESP signals [3]. The DB
test was performed with six cycles of paced breathing dur-
ing one minute, corresponding to a breathing frequency,
fresp=0.1 Hz. By assuming that the complete one-minute
test is periodic, each signal can be modelled as

x(n) =

N−1∑
k=0

cke
j2πTkn/N , (1)

where T is the sampling interval, and ck is the amplitude
and N is the number of frequency components, which was
was set to N = 18. The power of each signal component is
given by Pk = |ck|2. Note that the fundamental frequency,
i.e., the frequency of the first component, is equal to the
inverse of the period length (which is one minute). Thus,
a signal with a nearly identical response for all six breath-
ing cycles will present with most power at the breathing
frequency and its harmonics, i.e., mainly at the 6th, 12th

and 18th components in the FS model. However, signals
with irregular responses will also have power in other FS
components, such as arrhythmias but also amplitude or fre-
quency modulated signals.

The main aim of the vector-based similarity analysis is
to detect HR responses that were unsynchronized with res-
piration. Therefore, three characterizing feature variables
were derived based on spectral regions where the power
was expected to be low if HR followed the paced breathing
pattern, provided that the DB test was correctly performed.
First, FS components were normalized based on the sum of
the expected dominating components:

ci = Pi/(P6 + P12 + P18). (2)

Then a dimension reduction was performed by defining
three feature variables, representing the power in different
frequency regions:

x1 = clowfreq =
∑

ci, i = {1− 4} (3)

x2 = cmidfreq =
∑

ci, i = {5, 7} (4)

x3 = chighfreq =
∑

ci, i = {8− 11, 13− 17} (5)

These features were used to assess the similarity be-
tween the feature vectors representing the RESP and HRV
signals and for classification of different patterns.

The feature vectors were mapped to HD space where
the normalized Hamming distance (HamD) between the

two HD vectors was used as the similarity metric. Table 1
provides and example of such mapping. First, a value of
each normalized feature was quantized. The table shows
the number of the corresponding quantization level. Next,
each feature was randomly assigned a base binary HD vec-
tor with N = 10000 dimensions (N = 8 in the table).
Base HD vectors have approximately the same number of
1’s and 0’s. Coded HD vectors corresponding to quanti-
zation levels were derived from the base HD vectors us-
ing the “nonlinear mapping” procedure as described in [4].
Qualitatively, the larger is the level number the more dis-
similar is its coded HD vector to the base HD vector (red
positions in the table). Finally, coded HD vectors for all
features were summed together (bitwise) in a single HD
vector (HD pattern) which was binarized using the major-
ity sum operation.

Table 1. Example of the mapping of a feature vector to
HD space.

Feature X1 X2 X3
Normalized 0.25 0.3 0.02
Quantized 5 6 1

Base vector 00110100 11100110 01000110
Coded vector 01010110 10001101 01010100
HD pattern 01010100

The similarity between two binary HD vectors, Xr and
Xh, is characterized by the Hamming distance (HamD),
which is normalized by the dimensionality N ) and mea-
sures the proportion of elements in which they differ and
is calculated as:

HamD(Xr,Xh) =
1

N

N∑
i=1

(Xri ⊕Xhi), (6)

where ⊕ denotes element-wise XOR operation. The simi-
larity of the signals (HD patterns) was classified into four
different groups based on k-means clustering (k = 4) of
normalized HamD.

Power spectra of linearly detrended and Hanning-
windowed data were determined using the Welch peri-
odogram method, and power spectral percentiles were de-
termined for each group. A comparison was also made
with a coherence-based similarity index, the coherent
power index (CPI), given by:

CPI =
fs/2∫
f=0

p1(f)c12(f)df/
fs/2∫
f=0

p1(f)df (7)

where p1(f) is the power spectrum of HRV and c12(f)
is the coherence spectrum. Thus, CPI is an estimate of
the fraction of the total power of the HRV signal which is
coherent with the RESP signal. Coherence spectra were
determined by dividing data into 20 seconds blocks, with
10 seconds overlap between blocks.
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4. Results

Figure 1 shows two examples of recorded HR signals
and how feature variables were derived from FS compo-
nents. Left panels shows data from a healthy subject with
a relatively high similarity between HRV and RESP, as
shown by the FS components. Right panels shows data
from a patient with dysrhythmia, where there was a large
difference in the pattern of FS components for HRV as
compared to RESP. This patient presented with second-
degree atrioventricular block in three cycles, thus this is an
example of marked cardiorespiratory desynchronization.

Figure 1. Recording from a healthy subject (left) and from
a patient with dysrhythmia (right). Top: Original RR sig-
nals and the reconstructed ones from 18 FS components.
Normalized FS coefficients for HRV (middle) and RESP
(bottom) signals. Symbols show how FS components were
merged into three feature variables.

Figure 2 presents the distribution of the three extracted
features from FS components of the recorded RESP (top)
and HRV (bottom) signals for Controls (left) and CAN pa-
tients (right). Box plots of features for RESP signals are
similar for both groups, while values of features for HRV
signals are lower for controls than that for CAN patients.

Figure 3 shows a comparison of the two similarity mea-
sures for the recorded data. For each pair of RESP and
HRV signals, CPI and HamD were calculated. The figure
demonstrates that there is an interrelation between HamD
and CPI. Pairs with low CPI feature high HamD while
pairs with high CPI correspond to low HamD. Note, that
there are exceptions when large CPI corresponds to rather
large HamD. It is also clear in Figure 3 that most of the
controls reside in the upper left corner, which corresponds
to the area with large CPI and small HamD. Another ob-
servation is the majority of the points in the lower right
corner (i.e., the region with low similarity) are from CAN
patients.

Four different groups obtained after k-means clustering

Figure 2. Box plots illustrating distributions of features
calculated from normalized FS for each category of sub-
jects in the recorded data. Boxes show median and in-
terquartile ranges. Dashed lines indicate the threshold for
defining extreme values, which are shown in a compressed
region between the solid lines.

Figure 3. CPI against HamD for controls (•) and patients
(o).

Table 2. Classification of subjects into similarity classes
based on k-means clustering of HamD and CPI.

HamD similarity Controls CAN patients
Very high 120 (69%) 33 (24%)
High 30 (17%) 39 (29%)
Moderate 21 (12%) 28 (21%)
Low 3 (2%) 35 (26%)
CPI similarity Controls CAN patients
Very high 115 (66%) 40 (30%)
High 43 (25%) 34 (25%)
Moderate 14 (8%) 27 (20%)
Low 2 (1%) 34 (25%)

could be naturally associated with the degree of similarity
between HRV and RESP signals. Class C1 denotes very
high similarity class, C2 – high similarity, C3 – moder-
ate similarity, and C4 – low similarity. Table 2 shows the
distribution of signals into different classes for HamD and
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Figure 4. Power spectra for respiration signals (left) and
for heart rate signals (middle) after classification of the
HamD into four classes. Right panels show corresponding
power spectra for heart rate after classification of coherent
power index (CPI) into four classes. Lines show medians
and areas illustrate 10% and 90% percentiles for normal-
ized power spectral densities (PSD) for all signals in each
class.

CPI respectively. The distributions obtained for both met-
rics are very similar. Notably, there was a high percentage
(26% for HamD) of CAN patients classified into low sim-
ilarity class while there were only 2% of Controls in that
class. This is a clear indication of the presence of low car-
diorespiratory synchronization in many CAN patients.

Figure 4 shows a comparison between spectral per-
centiles for HamD and CPI after the clustering. The spec-
tral percentiles showed a clear distinction between differ-
ent degrees of HRV responses, ranging from highly similar
to RESP, with a marked peak at 0.1 Hz and its harmonics
in the highest similarity class (C1), to broadband spectral
patterns in the lowest similarity class (C4).

Figure 5 depicts HamD against DBI for both groups of
subjects, where the interpretation of DBI in terms of au-
tonomic function is marked in different regions. The up-
per right corner indicates the region with both high DBI
and high HamD, indicating low synchronization between
RESP and HRV signals due to arrhtyhmias. Note that
there were 16 CAN patients but no Controls in that region.
These patients should be excluded from the evaluation of
autonomic function. On the other hand, a z-score for DBI
below -2 most likely indicates reduced autonomic function
event if HamD is high, since the magnitude of the HR fluc-
tuations is so low.

Figure 5. HamD between RESP and HRV signals against
DBI (z-score) for controls and CAN patients. Horizontal
lines indicate boundaries for similarity classes found using
k-means clustering. Boxes indicate regions with normal
DBI, reduced DBI, and exclusion from scoring of auto-
nomic function.

5. Conclusion

The proposed vector-based similarity analysis is advan-
tageous as it can be based on all types of feature vari-
ables, and also presented with equivalent results as the
coherence-based analysis. The similarity analysis helped
to identify and exclude subjects with HR responses due to
arrhythmia during the deep breathing test, where scores as
DBI then can be used to score autonomic function in the
remaining subjects.
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