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Abstract 

Vectorcardiography (VCG) is generated by projecting 
signals from several leads onto three main orthogonal 
axes. There is evidence that by doing this projection, some 
relevant diagnostic information may be lost.  

We investigated a new way to reduce this information 
loss. For that, we computed VCG features from the 
standard 12-lead ECG system and compared its 
performance in diagnosing myocardial infarction with the 
standard Frank’s VCG, a VCG derived from the 12-lead 
ECG using the Dower’s inverse transform and with a 3-
dimensional projection of the 12-lead ECG obtained with 
principal component analysis. Although the results are not 
conclusive, they suggest that the proposed 12-dimensional 
VCG may reduce the information loss by preserving all the 
ECG leads without the need of any projection.  

 
1. Introduction 

Vectorcardiography (VCG) is a way to represent the 
electrical forces generated by the heart by means of a 
vector in a three-dimensional orthogonal coordinate 
system. The orthogonal Frank’s 3-lead VCG is considered 
as the standard for VCG [1][2] and is known for using three 
leads compared to the standard 12-lead ECG, which is the 
standard system  used in the clinical practice. 

However, the standard 12-lead ECG is characterized by 
a certain degree of redundancy, due to the fact that some 
of the leads are nearly aligned or derived as linear 
combinations of other leads. This redundancy already 
suggests that it is possible to reduce the number of leads by 
means of a projection or by selecting a subset of leads. 
Nonetheless, the question remains about if by reducing the 
number of leads (even if there is some redundancy in 
them), we lose relevant diagnostic information as well. 
There are already some authors indicating that lead 
projections and transformation functions have associated 
an information loss [3]. 

The aim of this research is to shed light about whether 
adding more leads (more information) will reduce the 
information loss and improve the diagnostic accuracy. In 
order to assess that, we considered four different 
approaches, each one having a different number of leads. 
A model is built for each approach by using VCG features 

coming from the corresponding lead system, and 
performance is evaluated in terms of the ability of each 
approach in classifying myocardial infarction (MI) vs 
healthy control (HC) subjects. 

 
2. Materials and Methods 

2.1. Database 

We used the PhysioNet PTB Diagnostic ECG database 
(PTBDB) as data source [4][5]. This database contains 15 
simultaneous ECG recordings (12-lead ECG and three 
Frank orthogonal leads) for 268 patients having different 
cardiac diseases. Table 1 shows the different diagnostic 
classes for the subjects in the PTBDB. The recordings were 
typically of ~2 min duration and all the signals were 
recorded for at least 30 seconds. The sample frequency of 
the recordings is 1KHz and we applied a bandpass filter 
between 0.5 Hz and 50 Hz in order to remove baseline 
wandering and high frequencies components. 
 
Table 1. Diagnostic class of patients in the PTBDB. 
 

Diagnostic class Number of subjects 
Myocardial infarction 148 
Cardiomyopathy/Heart failure 18 
Bundle branch block 15 
Dysrhythmia 14 
Myocardial hypertrophy 7 
Valvular heart disease 6 
Myocarditis 4 
Miscellaneous 4 
Healthy controls 52 

 
In our research we considered only MI and HC subjects, 
having in total 200 patients. 
 
2.2. Vectorcardiography 

In order to assess what is the impact on having more 
leads (more information), we computed VCG features with 
four different approaches. One of those approaches, 
computes features from a 12-dimensional VCG while the 
other three compute features from a 3-dimensional VCG. 

Computing in Cardiology 2018; Vol 45 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2018.155



The VCG features were computed from the following 
systems: 

 
1. Frank 3-Lead VCG (VCGFrank). This is the 

standard Frank’s VCG. This available in the 
PTBDB. 

2. Dower’s Inverse Transform VCG (VCGDower). 
We used the transformation matrix developed by 
Dower et al [6][7] that derive the 3-lead Frank VCG 
from the standard 12-lead ECG based on Frank’s 
torso model. 

3. PCA-VCG (VCGPCA). We built a three-
dimensional VCG by projecting the standard 12-
lead ECG into a three-dimensional space by using 
principal component analysis (PCA). 

4. Twelve Dimensional VCG (VCG12D). In that case, 
we derived a 12-dimensional VCG from the 
standard 12-lead ECG. It was constructed by 
creating a twelve dimensional vector using the 12-
lead ECG signals (𝑣⃗#$% = {𝑒𝑐𝑔#, 𝑒𝑐𝑔$, … , 𝑒𝑐𝑔#$}). 
From this vector we derived the set of features 
described in section 2.3. 
 

2.3. Feature Extraction 

From each system described in Section 2.2, we 
extracted the following VCG features: 
• Perimeter of the loop. 
• Distance between the starting and end points of the 

loop. 
• Coordinates of the maximum vector of the loop. 
• Loop maximum vector length. 
• Loop area. 
• Area under each dimensional component. With 

dimensional component we refer to a single lead 
signal. For the case of 3-dimensional VCGs 
(VCGFrank, VCGDower and VCGPCA) we have x, y 
and z components while for the case of the 12-
dimensional VCG we have ecg1 to ecg12 
components. 

• Coordinates of the centroid of the loop. 
• Loop centroid norm. 

 
We extracted those features for both, QRS and T-wave 

loops of the cardiac cycle.  
It is important to notice that for the case of the features 

related to vectors (maximum vector and centroid), we will 
get three features (x, y and z components of the vector) for 
the QRS and another three features for the T-wave when 
working with VCGFrank, VCGDower and VCGPCA. When 
working with VCG12D we will get twelve features (ecg1 to 
ecg12 components of the vector) for the QRS and another 
twelve features for the T-wave. The same will occur for the 
case of the area under each dimensional component. 
Overall, we will have 54 more features in the case of 

VCG12D respect to the case of VCGFrank, VCGDower and 
VCGPCA. 

 
2.4. Models and Feature Selection 

Before building any model and to reduce chances of 
overfitting, we divided the dataset into a training dataset 
containing 70% of the subjects (selected at random) and a 
validation dataset containing the remaining 30% of the 
subjects. For integrity purposes, we checked that the 
percentage of MI and HC subjects was the same in both 
training and validation datasets. 

To assess the performance of each individual feature in 
diagnosing MI vs HC subjects, we used univariate logistic 
regression model. We did that for each of the VCG 
methods (VCG12D, VCGPCA, VCGDower and VCGFrank). The 
reason of using univariate logistic regression instead of 
multivariate logistic regression, is because we wanted to 
reduce any potential benefit of the 12-dimensional VCG 
(having more leads and also more features) when using a 
multivariate model. Therefore, we decided to compare the 
models using the best feature of every VCG method. The 
criteria to choose the best feature was: 
• Having the feature in the logistic regression model 

a p-value <0.05. 
• Having the feature the biggest area under the ROC 

curve (AUC) in the validation dataset. 
We were interested as well, in the classification 

performance of the different VCG methods when using a 
multivariate model. We used lasso regression model [8] 
which is a multivariate extension of the logistic regression 
model that performs both variable selection and 
regularization. This enhances the prediction accuracy and 
the interpretability of the statistical model that its produces.   
In that case, we considered all parameters as initial input 
for all the approaches (VCG12D, VCGPCA, VCGDower and 
VCGFrank). The performance criterion we used in this case 
was the biggest AUC in the validation dataset after training 
the model. 

 
3. Results and Discussion 

3.1. Univariate Logistic Regression 

Figure 1 shows the results of classifying MI vs HC 
subjects using the univariate logistic regression approach 
with the best feature for all approaches. The AUC values 
depicted in Figure 1 are obtained in the validation dataset 
(30% of the subjects) after training the model with 70% of 
the subjects. 

Table 2 shows the best feature for each of the VCG 
methods. Note that the best feature of VCGFrank and 
VCGDower is the same. This is not a surprise as VCGDower is 
a reconstruction of the VCGFrank from the 12-lead ECG. 
Also, AUC performance results for both are similar (see 
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Figure 1) which can be also explained in the same way as 
above. Also, we showed in a previous work [9] that Frank’s 
VCG and Dower’s VCG were having similar performance 
in classifying MI and HC subjects. 

 

 
Figure 1. AUC performance for the univariate logistic 
regression method when classifying MI vs HC subjects. 
VCG12D (green), VCGFrank (blue), VCGPCA (purple) and 
VCGDower (red). 
 
Table 2. Best feature selected using univariate logistic 
regression for the different VCG methods. 
 

VCG Feature 

VCG12D T-wave average vector length on the 4th 
dimensional component. 

VCGFrank T-wave average vector length on x direction. 

VCGPCA QRS standard deviation on x component of the 
centroid. 

VCGDower T-wave average vector length on x direction. 
 

It is interesting to see that VCG12D, VCGFrank and 
VCGDower methods selected as best feature a T-wave 
parameter while VCGPCA method selected a QRS 
parameter. We believe this is due to the fact that PCA 
method gets the highest energetic modes of the signal 
being those associated to the QRS part of the cardiac cycle. 
This may explain the relatively poor performance of PCA 
VCG (when compared with the other VCG methods) as it 
has been shown in the literature that the T-wave 
component of the cardiac cycle contains the most relevant 
information related to the diagnosis of MI [10][11]. 

As can be observed in Figure 1, the approach which 
gives   the best results is the one based on the 12-lead ECG, 
closely followed by Frank VCG and Dower’s VCG, being 
PCA-VCG the one that is performing the worst. 

Nonetheless, as depicted in Table 3, the difference between 
12-lead, Frank’s and Dower’s VCGs are not significant 
while it is significant when comparing 12-lead and 
Dower’s VCGs against PCA-VCG. 

 
Table 3. DeLong’s significant test for VCG AUC values 
using univariate logistic regression method. 
 

ROC-Test p-value 
VCG12D vs VCGFrank 0.62 
VCG12D vs VCGDower 0.82 
VCG12D vs VCGPCA 0.03 
VCGFrank vs VCGPCA 0.05 
VCGDower vs VCGPCA 0.04 
VCGFrank vs VCGDower 0.91 

 
3.2. Multivariate Lasso 

Figure 2 shows the results when using a multivariate 
lasso model. Once again, we see that the best approach is 
the one based on the 12-leads, closely followed by Dower’s 
and Frank’s approaches, being PCA approach the one with 
the lowest performance. However, when looking to 
significance in performance among the different VCGs 
(Table 4), we see that the differences are not significant. 

 

 
Figure 2. Lasso AUC for classifying MI vs healthy control 
subjects using VCG12D (green), VCGFrank (blue), VCGPCA 
(purple) and VCGDower (red). 
 

Table 5 shows the number of features selected for every 
VCG method. We see that 12-dimensional VCG is the one 
that is having a greater number of features selected in the 
lasso model. On the other hand, Frank, Dower, and PCA 
VCGs are having the same number of features selected by 
lasso method. This makes sense since VCG12D has 54 more 
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features than VCGFrank, VCGDower and VCGPCA, so seems 
normal that the lasso method selected more features for the 
case of VCG12D. 
 
Table 4. DeLong’s significant test for VCG AUC values 
using lasso method. 
 

ROC-Test p-value 
VCG12D vs VCGFrank 0.08 
VCG12D vs VCGDower 0.29 
VCG12D vs VCGPCA 0.10 
VCGFrank vs VCGPCA 0.53 
VCGDower vs VCGPCA 0.21 
VCGFrank vs VCGDower 0.82 

 
Table 5. Number of features selected for the different VCG 
methods when using Lasso. 
 

VCG # Features 
VCG12D 17 
VCGFrank 10 
VCGPCA 11 

VCGDower 11 
 

If we compare the AUC performance between the 
univariate logistic regression method (Figure 1) and the 
multivariate lasso method (Figure 2), we see that the 
improvement in the case of multivariate lasso method is 
limited (~ 2.8% AUC increase in average). We believe that 
the main reason for this is that the classification task of 
differentiate between MI and HC subjects is a not complex 
one. Therefore, with one feature (the best feature in the 
univariate method), we can explain most of the variance of 
the problem and adding additional features will not 
increase the classification performance significantly. 
4. Conclusions 

Having more ECG leads will add certain degree of 
redundant information. This is especially true for the case 
of the standard 12-lead ECG in which some of the leads 
are nearly aligned or derived as linear combinations of 
other leads. Nonetheless, still the question remains whether 
we just can remove some of the leads in the hope of getting 
the same performance and using less leads. 

In this study we investigated the ability of VCG features 
to distinguish between MI patients and healthy subjects, 
when those features are extracted from three or more leads. 
Results showed that when VCG parameters are computed 
on 12-leads, rather than only three, classification 
performance increases. Nonetheless the differences in 
performance were not significant and not conclusive 
results could be derived from our research. One possible 
explanation for not having significant differences is that 
the classification problem we chose (MI vs HC subjects) 
was easy enough to make the three-dimensional VCGs 

perform well in comparison with the 12-dimensional VCG. 
If the classification task is not very difficult, a good 
classification performance can be achieved without the 
need of lot of information and then the information loss 
will not play a significant role. This may explain as well 
why the univariate logistic regression model (1 feature 
model) performed almost as good as the multivariate lasso 
(multiple feature model). From that, we can conclude that 
when it comes to separate between MI and HC, we do not 
need all the information present in the 12-leads and 
selecting the best parameter in one of the leads is enough 
to achieve an AUC above 93%. 

Additionally, we believe that having a more challenging 
classification problem may increase differences in 
performance as information loss will play a more critical 
role. More research has to be done in order to validate this 
hypothesis. 
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