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Abstract

Hypertrophic cardiomyopathy (HCM) is a myocardial
disorder that affects 0.2% of the population and it is ge-
netically transmitted. Several ECG findings have been re-
lated to the presence of fibrosis in other cardiac diseases,
but data for HCM in this setting are lacking. Our hypoth-
esis is that fibrosis affects the electrical cardiac propa-
gation in patients with HCM in a relatively specific way
and that this effect may be detected with suitable postpro-
cessing applied to the ECG signals. We used 43 standard
12-lead ECGs from patients with previous clinical diag-
nosis of HCM. Principal Component Analysis (PCA) was
applied by combining the ECG-leads oriented to differ-
ent anatomic regions, hence assessing the potential fibro-
sis effects in the resulting leads for postprocessing conve-
nience. Linear classifier of Support Vector Machine type
were used with several statistics extracted from the result-
ing PCA-components, including normalized power, stan-
dard deviation, kurtosis, skewness, and local maxima. Re-
sults reached 75.0% sensitivity, 80.0% specificity, 85.7%
positive predictive value, 66.7% negative predictive value,
and 76.9% accuracy in our database. There is evidence
that myocardial fibrosis can be detected in patients with
HCM by postprocessing their ECG signals.

1. Introduction

Myocardial fibrosis is defined as a pathological myocar-
dial remodeling characterized by excessive deposition of
extracellular matrix proteins (collagen) which reduces tis-
sue compliance and favors the development of heart fail-
ure. In this work we select a definite illness which can
induce cadiac fibrosis, the hypertrophic cardiomyopathy
(HCM). It is a genetically based disease with a prevalence
of approximately 0.2% in the global population, and with
men and women equally affected [1,2]. The most dev-
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astating clinical presentation of HCM, specially in young
people, is sudden cardiac death due to fatal ventricular ar-
rhythmias. In clinical practice, the standard tool for de-
tecting fibrosis is Magnetic Resonance Imaging with Late-
Gadolinium Enhancement (MRI-LGE), but this technique
is expensive and cannot be performed in patients with
non MRI-compatible cardiac implanted devices or claus-
trophobia.

Recent research has proven that the QRS fragmenta-
tion, which is a manifest of an acute type of fibrosis, can
be detected in a standard 12-lead ECG [3-5], which ev-
idences that the additional connective tissue may change
the ECG morphology. Our hypothesis is that the changes
induced by the the connective tissue are always present on
the ECG, but its effect is often masked by the noise in the
record. Therefore, the aim of this work is the develop-
ment of an algorithm that classifies standard 12-lead ECG
registers from HCM patients with myocardial fibrosis and
without it. All the processes done in order to develop the
algorithm have been supported and supervised by expert
medical doctors from Hospital Universitario Virgen de la
Arrixaca of Murcia.

This paper follows the classical structure. In Section 2,
we describe and explain the used database, and each step
of our algorithm. Then, in Section 3, we report and show
the experiments and their results. Finally, in Section 4, we
include the discussion of the results and the conclusion of
the work.

2. Materials and Methods

2.1. Equipment and Algorithm Overview

The used database consisted of 43 standard 12-lead ECG
records carefully selected and analyzed by expert clini-
cians in our group. These records were from patients with
HCM and they were diagnosed with (25) or without (18)
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fibrosis by using the MRI-LGE technique.

From a schematic point of view, the algorithm can be
divided in different blocks. In the first block, called pre-
processing, the signal is processed in order to detect the
position of each QRS complex, and then a beat template
is created by averaging the highly-correlated beats. In the
second block, called signal transformation, the beat tem-
plates are transformed in order to enhance the presence
of fibrosis. In the third block, called feature extraction,
a number of features are computed in order to describe
the transformed signals from a statistical point of view. In
the last block, called classifier, a support vector machine
(SVM) is used in order to classify the records as fibrosis
positive or fibrosis negative.

2.2.  Preprocessing

In this stage, the signal is filtered with a low order band-
pass filter from 0.5 Hz to 75 Hz, the baseline noise is re-
duced by using a cubic spline interpolation, and the power-
line interference is reduced by using a notch filter centered
in 50 Hz and its harmonics [6]. Then, the QRS com-
plexes are extracted by using a modified version of the
Pan-Tompkins algorithm developed by our group and de-
scribed in [7]. Then, a beat template is created for each
lead by averaging the highly-correlated detected beats, this
algorithm was developed by our group and described in
[8]. In the last part of this block, the beat templates are
grouped in three different sets, which are selected follow-
ing the next hypothesis. According to the medical point
of view, the QRS fragmentation, which is a manifest of
an acute type of fibrosis, must appear in at least two leads
from the same region in order to consider it as fragmented
record [5]. Therefore, it is reasonable to include the use
of these regions in an algorithm that allows to detect the
fibrosis. For this reason, the beat templates are grouped in
regions, namely, the lateral region (which contains I, aVL,
V5, and V6 leads); the antero-septal region (which con-
tains V1, V2, V3 and V4 leads); and the inferior region
(which contains II, III, and aVF leads).

2.3. Signal Transformation

The main hypothesis of this work is the existence of the
fibrotic signal, i.e., the signal which contains information
about the fibrosis, and in order to extract this signal we
used two different approaches. In the first one, we as-
sumed the statistic independence of the fibrotic signal with
the others signals in the ECG. And the second one, we as-
sumed the uncorrelation between the fibrotic signal and the
others signals in the ECG.

In order to extract the fibrotic signal or its features ac-
cording to the first approach, we propose the use of inde-

pendent component analysis (ICA), which is a mathemat-
ical tool that allows to transform a set of input signals in

a set of statistically independent signals. ICA follows the
next steps in order to transform the input signals. Let X
be the matrix with the ECG signals and let S be the matrix
with the unmixed source signals, including the fibrotic sig-
nal and let matrix A represent the linear mixing condition
which transforms the original signal set into the recorded
one, and matrix W represent the inverse matrix of A. From
a matricial point of view the equation can be rewriten as
follows, X = AS - S =A"1X=WX

Consequently, ICA is focused on estimating matrices A
and S using X matrix, by applying the condition that the
columns .S must be statistically independent. According to
this, the problem can be reformulated and ICA finds matrix
W minimizing the gaussianity of matrix S. To perform this
transformation, the FastICA algorithm was applied [9, 10].

In order to extract the fibrotic signal or its features ac-
cording to the second approach, we propose the use of
principal component analysis (PCA), which is a linear
transformation that maps the coordinate system of a given
dataset to a new one, in order to give orthogonal directions
and hence uncorrelated projections. Mathematically, PCA
computes the covariance matrix of the input signals and
their eigenvectors, and then the transformation is done by
using a matrix created by the eigenvectors sorted by the
magnitude of the corresponding eigenvalue [10, 11].

2.4. Feature Extraction and Classifier

Once the signals are transformed, we need to extract
some features that characterize the fibrotic signal in the
case that it appears in the record. For this purpose, we se-
lected a set of representatives features, namely, power (p)
, standard deviation (o), skewness (s), kurtosis (k), and
the number of local maxima. All of these features were
computed in a segment that includes the QRS complex,
because it is the region where the fibrosis must appears
clearly according to medical knowledge. The mathemati-
cal expressions for each feature are the following ones,

(1
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where 2[n] is a segment of the beat template, N is the num-
ber of samples of the signal segment, and 7 is the average
of z[n).

For each record, a feature vector was created by follow-
ing the next steps. First, we selected one of the variables
computed before in order to create our ranking criterion.
Then, a lead index was created by sorting the values of the
ranking criterion. Finally, the feature vector was created by
grouping the p, o, s, k, and number of maxima, sorted by
the use of the lead index. This step is very relevant in our
algorithm because it ensures that the features are sorted by
the same criteria, and it helps the support vector machine
(SVM) to reach better results. The next Figure shows the
process used to create the feature vector.
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Figure 1. Sorting process of feature vector.

A SVM with a linear kernel was used in order to build
the classifier. Before launching the classifying process, the
features were normalized to zero mean and unit standard
deviation. The model parameter optimization was per-
formed by using a grid search method with 5-fold cross-
validation. The train and test sets were given by 70% and
30% of total samples.

3. Experiments and Results

In order to evaluate the performance of our classifier
we used the classical figures of merit, namely, Sensi-
tivity (Sen), Specificity (Spe), Positive Predictive Value
(PPV), Negative Predictive Value (NPV), and Accuracy

. : . _ TP _
(Acc), described as follows: Sen = TPIFN Spe =
TN _ TP _ 1IN _
mnirp: PPV = 7p1rp NPV = 71w Acc =
%, where T'P is the number of fibrotic

records classified as fibrotic, F'N is the number of fibrotic
records classified as non fibrotic, T'N is the number of non
fibrotic records classified as non fibrotic, and F'P is the
number of non fibrotic records classified as fibrotic.

The experiments were aimed to determine which pro-
posed models are the best, in terms of the figures of merit
described before, and in order to select the model with bet-
ter performance.

Figure 2 shows several radar plots which represent the
performance of each proposed model in terms of their fig-

ures of merit. The title of each radar plot meets the fol-
lowing pattern: Signal transformation—feature selected as
ranking criterion—transformed leads selected. The signal
transformation can be PCA or ICA, the selected feature as
ranking criterion can be p, o, s, k, or number of maxima
(nm), the lead selected can be all leads (all pseudo-lead),
the lead with highest value of the feature selected as crite-
rion (last pseudo-lead), and the lead with the lowest value
of the feature selected as criterion (first pseudo-lead).

According with Figure 2 the best models are: First, PCA
sorted by o selecting the features of the pseudo-lead with
lowest standard deviation (5); Second, PCA sorted by k se-
lecting the features of the pseudo-lead with lowest kurtosis
(6); And third, ICA sorted by o selecting the features of the
pseudo-lead with the highest standard deviation (17). Ta-
ble 1 shows the detailed performance for these three mod-
els.

Code Sen Spe PPV NPV Acc
5 75.00 80.00 85.71 66.67 76.92
6 8750 60.00 77.78 75.00 76.92
17 100.00 40.00 72.73 100.00 76.92

Table 1. Complete results for the three best proposed mod-
els. The code is the position of the radar plot in Figure 2

4. Conclusions

The methods defined in this paper shown that it is possi-
ble to detect the cardiac fibrosis in standard 12-lead ECG
registers and in HCM patients. Multivariate transformation
techniques such as PCA and ICA allow to identify its pres-
ence with moderate accuracy. In order to improve our the
detection capabilities, ongoing and future research lines in
this topic are the application of these new methods in new
types of records such a wearables records, where the de-
tection of fibrosis can be a powerful tool to early detection
of sudden cardiac death in young people.
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