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Abstract

Sleep apnea is one of the most common sleep disor-
ders. As sleep apnea is associated to adverse health out-
comes, early screening is promoted through unobtrusive,
cheap and simple systems for sleep monitoring. A com-
mercial pressure sensor meeting these requirements is the
Emfit QS, which was integrated in a bed of a specialized
sleep center. The sensor is pressure based and highly sen-
sitive to movement. This causes artefacts of different mor-
phologies in the signal. An unsupervised artefact detec-
tion method was developed to avoid burdensome manual
labelling of artefacts in the signal and enabling further
analysis. Moreover, the percentage of detected artefacts
was useful for assessment of the sleep apnea severity as
movements partially originate from apneic arousals. Se-
vere sleep apnea patients could be identified with a sensi-
tivity of 80% and a specificity of 87%.

The proposed approach offers an ambivalent tool for
artefact detection and unobtrusive screening of sleep ap-
nea patients at home.

1. Introduction

Sleep apnea is one of the most common sleep disorders
with an expected increase in prevalence [1]. It is charac-
terized by breathing cessations causing frequent arousals
from sleep. It heavily disturbs the patient’s night sleep,
leading to a range of health problems such as daytime
sleepiness and cardiovascular diseases.

The gold standard method for diagnosis is a full-night
polysomnography (PSG) in a specialized sleep centre [2].
However, the extensive sensor set-up causes patient dis-
comfort and does not replicate a normal sleeping environ-
ment. Moreover, the PSG procedure requires special train-
ing for analysis, is costly and burdensome. Sleep centres
often have a limited capacity as well. Therefore, simple,
cheap and unobtrusive measurement systems are desired.

These can be used in a home-environment to complement
the current clinical practice such as pre-clinical screening.
With these characteristics, the systems would allow long-
term monitoring as well.

The Emfit is a pressure sensor meeting these require-
ments. From this pressure signal, a respiratory signal and
ballistocardiography (BCG) can be derived. BCG is an
unobtrusive measurement of the body's recoil caused by
cardiovascular pulsation. Tenhunen et al. [3] defined sev-
eral Emfit-derived parameters and found correlations with
AHI. A prerequisite for their method was a visual scor-
ing of breathing patterns into nine categories. The authors
did not develop an automated detection of breathing pat-
terns and manual annotation was still required. Moreover,
the Emfit is highly sensitive to movement. This causes
artefacts of different morphologies in the signal. Bruser
et al. developed an algorithm [4] to separate Emfit BCG
epochs into epochs with normal sinus rhythm, atrial fib-
rillation and artefacts using common supervised machine
learning algorithms.

Here, an unsupervised artefact detection method was de-
veloped to avoid burdensome manual labelling of artefacts
in the signal and enabling further analysis. Furthermore,
the current study explored the use of Emfit as an unobtru-
sive screening tool of patients at risk of sleep apnea based
on the percentage of detected artefacts.

2. Methods

2.1. Data

The Emfit QS is a commercially available pressure sen-
sor. The sensor (542mm × 70mm × 1.4mm) was placed
right beneath the mattress cover under the patient’s chest
area to minimize the distance to the heart and maximize
signal quality. The data was sampled at 100Hz.

The Emfit sensor and PSG recorded simultaneously data
of 37 patients (33 male, age: 48.4 ± 11.4 years, BMI:
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30.4 ± 7.5 kg
m2 , AHI: 28.0 ± 24.0 ) during sleep diagno-

sis in UZ Leuven. Overnight PSG signals were annotated
by sleep specialists according to the AASM 2012 scoring
rules [2] to derive the AHI. Three patients did not suffer
from sleep apnea, 9 suffered from mild apnea, 13 from
moderate apnea and 12 from severe apnea.

2.2. Emfit Preprocessing

After subtraction of the mean value, the raw pressure
signal of the Emfit sensor was filtered with a Butterworth
bandpass filter to obtain both the respiration (0.08-1Hz)
and the BCG (6-16Hz) signal. The respiratory signal was
resampled at 8Hz and the BCG signal at 50Hz.

Next, discrete wavelet transforms were applied on all
three signals, namely the raw pressure signal, the respira-
tion and the BCG, to capture time-frequency domain infor-
mation. A Daubechies 1 (db1 or Haar) wavelet was applied
on the pressure signal to accentuate steep changes in the
signal. The signal was decomposed until level 8, i.e. [0.2,
0.4]Hz. The respiratory signal was approximated with a
db4 wavelet (until level 4, [0.25, 0.5]Hz ) and the BCG
with db6 (until level 2, [6.25, 12.5]Hz ). The respective
wavelet shapes were chosen for its resemblance with the
natural wave shape. A total of 17 signals (original signals
and decompositions) were used for the subsequent feature
extraction step.

2.3. Feature Extraction

Time domain features were derived from both the un-
transformed signals and the wavelet decomposed signals
(see Table 1). A feature window of 10s was applied
to accurately locate artefacts and include two to three
breaths from the respiration signal. Features 1-5 are ex-
pected to be affected by outliers caused by artefacts. To
capture the regularity of the signal, the Kurtosis of the
Autocorrelation function and Shannon Entropy were de-
rived. Furthermore, the peak-to-peak (PP) amplitude (PP
= max(x)−min(x)) of the segment should be very large
in the presence of a movement artefact. The next features
are based on a PP series within the feature window. The
window is split into 3 equal subsegments over which PP is
calculated, resulting in PP3 [4].

Features were standardized per subject to zero mean and
unit variance in order to map the different features within
similar ranges and to account for inter-subject variability.
Highly correlated features from Table 1 were removed us-
ing Pearson’s linear correlation coefficient and a threshold
of 90%. Feature values were transformed by Euclidean
norm normalization, to decrease the effect of extreme val-
ues.

Table 1. Features extracted from 10s windows.

Feature
1-3 Mean, Variance (=Var), Standard Deviation (=Std),
4-5 Kurtosis, Skewness
6-7 Kurtosis of Autocorrelation, Shannon Entropy
8 Peak-to-Peak Amplitude
9 Maximum (PP3) / mean (PP3)
10-11 Var (PP3) (=peakVar), Std (PP3)
12 [10%, 25%, 50%, 75% 90%] (PP3)
13 Inter Quartile Range (PP3)
14 Inter Decile Range (PP3)
15 Median Absolute Deviation (PP3)

Figure 1. Algorithm for unsupervised feature selection.

2.4. Unsupervised Feature Selection

An algorithmic pipeline for unsupervised feature selec-
tion was developed as depicted in Fig. 1. The input was a
K-medoids clustering to reduce the dataset and select train-
ing points [5], using a number of clusters Kmed = 2000
and the Mahalanobis distance metric. This selection served
as the input for an unsupervised feature selection frame-
work based on Robust Spectral learning (RSFS) [6]. Pa-
rameters α, β and γ of the RSFS were optimised with grid
search over equispaced values in logarithmic scale from
−3 to 3 for each parameter. For every set of parameters a
feature ranking was calculated with RSFS. After ranking
of all input features with a set of α, β and γ, a number
d of top ranked features was selected. Subsequently, a k-
means clustering in a d dimensional space was performed
20 times using squared euclidean distance and random ini-
tialisation. The performance of every k-means clustering
step was evaluated by the overall average silhouette score.
The entire pipeline from parameter selection to clustering
has been repeated for d = [3, 5, 7] features and k = 2 clus-
ters. The output of optimization were α, β and γ for fea-
ture ranking and the top ranked features (type and amount
d).
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2.5. Clustering of Artefacts and Arousals

The optimised parameters of the preceding step were ap-
plied to cluster the training points in two clusters. The
centroids of these trained clusters acted as target points for
the testing data. Every test data point was mapped to the
closest centroid in Euclidean distance to determine its as-
sociated cluster. The characteristics of the clusters were
analysed based on their feature values and running a pair-
wise Mann-Whitney U test.

It was assumed that one cluster would contain clean and
the other distorted data segments due to the nature of the
feature set. During sleep it was expected that the smallest
cluster of mapped test data contained artefacted segments,
mainly originating from movement or apneic arousals (fur-
ther referred to as artefact cluster). It was hypothesised
that the percentage of data segments belonging to the arte-
fact cluster increases with AHI as more movement and
arousals would be detected. Patients were grouped accord-
ing to standard sleep apnea classes based on AHI. Distri-
butions of artefact cluster sizes were derived for respective
classes. A Krukal-Wallis test with Bonferroni correction
was applied to test which classes stochastically dominate
the others. To discriminate severe sleep apnea (AHI≥ 30)
patients from other sleep apnea patients (AHI< 30), a re-
ceiver operating characteristic (ROC) curve analysis was
performed based on artefact cluster size.

2.6. Screening

In order to apply the previously described method for
screening, a leave-one-patient-out (LOO) approach was
taken. A K-medoids training sample selection was made
based on 36 patients. The optimised features were ex-
tracted from the training sample selection followed by k-
means clustering. The two centroids of the resulting clus-
ters acted as reference points for artefact and clean data of
the left out patient. The percentual artefact cluster size of
every LOO patient was assigned to the sleep apnea severity
class according to the patients’ AHI.

3. Results

3.1. Clustering

The unsupervised feature selection was based on an al-
gorithmic pipeline with optimization of different param-
eters. As optimal parameter sets slightly varied, feature
ranking varied as well. However, certain subsets of fea-
tures were favoured in the top 10 ranked features over sev-
eral K-medoids iterations. Within 24 iterations, 28 unique
features occurred in the top 10. Features resp db4 level1
peakVar, pressure db1 level4 peakVar and pressure db1
level3 peakVar were chosen as a performant subset of fea-

tures and occurred respectively 37.5%, 75.0% and 79.2%
in top 10 features.

After ranking all input features with a set of α, β and
γ, a number d of top ranked features was selected. Sub-
sequently, a k-means clustering in a d dimensional space
was performed. A low number of features was preferred.
The entire pipeline from parameter selection to clustering
was repeated as well for k = [3, 4, 5, 6]. With a higher
number of clusters k > 2, the overall average silhouette
score decreased, as probably the natural existing clusters
are broken up into multiple ones.

Based on 24 iterations of the pipeline for training sam-
ples selection and subsequent parameter selection, the fol-
lowing parameters were found to consistently provide a
good performance: α = 100, β = 1000, γ = 0.001;
d = 3; resp db4 level1 peakVar, pressure db1 level4 peak-
Var and pressure db1 level3 peakVar (see Table 1); k = 2.

The overall average silhouette score of both clusters of
training samples was 0.83. Cluster 1 contained the major-
ity of the training samples with a highly varying silhou-
ette score. In contrary, cluster 2 was a very well defined
cluster and should contain samples with similar character-
istics. The different cluster sizes can be explained by the
K-medoids selection of training samples which captured
different characteristics of the underlying data. Training
samples related to different types of distortions exhibited a
varying morphology. Every morphology needed to be rep-
resented by a different K-medoids centroid. Therefore, the
majority of K-medoid centroids were related to distortions.

Mapping the test data to the trained centroids resulted in
an overall average silhouette score of both clusters of 0.92.
The increase in score was due to a larger bulk of clean seg-
ments within the test data. One cluster containing higher
values of features highlighting peak variations was labelled
as artefact cluster. The other cluster characterized stable
segments without intermittent peaks and was labelled as
clean cluster. The difference in data distribution between
clusters was high (Mann-Whitney U test, p < 0.001), in-
dicating that parameters were well optimised to make a
distinction between artefact and clean data.

3.2. Screening

Several outliers were present in the distributions of mild,
moderate and severe classes. Three out of four outliers
belonged to patients with a BMI exceeding the 90th per-
centile of BMI (= 42.02 kg

m2 ). A very high BMI tends
to saturate the pressure signal and decrease signal qual-
ity. Therefore, patients with a BMI exceeding the the 90th
percentile were removed from the analysis (Fig. 2). With a
Kruskal-Wallis test, significant differences were observed
between mild - severe class (p < 0.05) and moderate -
severe class (p < 0.05).

The optimal threshold to identify patients at high risk
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Figure 2. Percentage of data assigned to artefact cluster
per patient, subdivided per apnea severity class.

of suffering from sleep apnea was determined by ROC
analysis, with an area under curve of 0.90. A threshold
of 14.57% artefacts resulted in a sensitivity of 80% and
specificity of 87%. False positive results were related to a
decreased signal quality, a %artefacts close to the decision
threshold or a patient nearly at risk of severe sleep apnea.
False negative results could be assigned to patients with
a very high number of obstructive hypopneas (Hobs). In
case Hobs were not followed by arousals, these are diffi-
cult to detect by the type of features used in the algorithm.

4. Discussion

An unsupervised artefact detection method for a pres-
sure sensor was developed. Additionally, the approach
presented here offers a tool for unobtrusive screening of
patients at risk of severe sleep apnea at home with a rela-
tively cheap sensor. These patients should be referred for
further research in a sleep clinic and can be prioritized on
the waiting lists.

A limitation of the tool is the exclusion of patients with
a large BMI as it causes the signal to saturate and decrease
the signal quality. In this study a threshold of 42.02 kg

m2 has
been set, meaning an exclusion of 10.8% of all patients of
which 50% suffered from severe apnea.

Another limitation is the difficulty of detecting apneic
events without arousals, often seen with obstructive hy-
poapneas (Hobs) or with periodic breathing. The change
in signal amplitude is limited or slowly waxing and wan-
ing. The window length of 10s is too small to detect this
and the type of features are rather tuned for steep changes.

Artefacts captured both movement due to position
changes as well as limb movements and arousals. Also,
the %artefacts was calculated over recording time, includ-
ing sleep and wake stages instead of total sleeping time.
Therefore, %artefacts could not be correlated to the AHI.

Further research is aimed at screening patients suffering
from mild and moderate sleep apnea using more refined
features based on respiration rate and heart rate. Addition-

ally, spiking patterns in the BCG band were reported tem-
porally related to upper airway obstruction, which could
be further investigated for apnea detection [7].

5. Conclusion

The Emfit pressure sensor was explored in its potential
for sleep apnea screening. An unsupervised algorithmic
pipeline based on clustering was developed to detect arte-
facts and relate these artefacts to sleep apnea classes. The
percentage of artefacts in the data was a useful parameter
to target severe sleep apnea patients.
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