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Abstract

The severity of sleep apnea is often assessed using the

apnea/hypopnea index (AHI), which is known to be inac-

curate in the phenotyping of apnea patients. Hence, bet-

ter approaches are needed to characterize these patients

and to allow cardiovascular risk stratification. In this con-

text, this work studies the cardiorespiratory interactions in

patients suffering from both sleep apnea and apnea asso-

ciated comorbidities by means of graph theory and ker-

nel methods. Results indicate that the total connectivity of

the cardiorespiratory graph is significantly (p < 0.01) re-

duced with higher AHI. Moreover, in patients with apnea

associated comorbidities, this connectivity appears to be

significantly reduced around apnea events. These results

are in line with studies that report stronger oxygen desat-

urations in patients with apnea associated comorbidities,

and more unstable control systems, which could be used

for a better characterization of apnea patients.

1. Introduction

Sleep apnea is a sleep-related breathing disorder charac-

terised by repetitive reduced (i.e., hypopnea) or complete

(i.e., apnea) cessations of airflow during at least 10 s. The

occurrence of these “respiratory events” during sleep has

been associated with systemic hypertension and increased

sympathetic modulation that in a long-term induce cardio-

vascular co-morbidities and mortality [1]. Currently, sleep

apnea is diagnosed using polysomnography (PSG), which

is an overnight sleep test that monitors different physio-

logical signals like heart rate, respiratory effort, and blood

oxygen saturation (SpO2). From the PSG, different pa-

rameters can be derived such as the apnea/hypopnea index

(AHI), which is used to assess the severity of sleep apnea

and is calculated as the amount of apneas/hypopneas per

hour of sleep. For instance, AHI< 5 is considered normal,

5 ≤AHI< 15 is mild, 15 ≤AHI< 30 is moderate, and

AHI≥ 30 is considered as severe. Even though AHI is one

of the most important indices to diagnose sleep apnea, it is

well-known that it does not completely correlate with the

severity of the disease [2]. Therefore, other information,

different than just the amount of events per hour, is needed

to better phenotype sleep apnea patients [2, 3].

It has been shown that the cardiorespiratory interactions

change during sleep apnea events [4, 5]. Furthermore, in

[6] it was shown that patients suffering from apnea-related

comorbidities, experienced more severe oxygen desatura-

tions during apnea episodes than patients with similar AHI

but without any comorbidity. Hence, the present study in-

vestigates if the interactions between heart rate, respira-

tion, and SpO2 are affected in sleep apnea, and if this effect

is enhanced by the presence of apnea associated comor-

bidities. In this way, these interactions could be used to

improve the phenotyping of apnea patients and in a long-

term improve the prioritization of treatment. These inter-

actions were analysed using an adaptation of the kernel

framework proposed in [7] for the construction of phys-

iological graphs. Here, a cardiorespiratory graph is con-

structed using the heart rate, respiration, and SpO2.

2. Methodology

2.1. Data

The dataset used in this study consisted of full night PSG

recordings of 110 patients referred to the sleep laboratory

of the University Hospitals Leuven, UZ Leuven, Belgium.

The mean age and BMI of the patients were, respectively,

47.3± 10.6 years and 29.3± 4.6 kg/m2, and 100 of them

had an AHI> 15 while the other 10 had an AHI< 5. The

latter 10 were referred as the control group and they did not

suffer from any apnea-associated comorbidity. The first

100, on the other hand, were referred as the apnea group

and they were divided into two subgroups. One subgroup

of 50 patients, referred as the cardiac subgroup, of which

46 suffered from hyperlipidaemia, 40 of hypertension, 5
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from diabetes, 4 had a heart infarct in the past, and 2 a

stroke. The other subgroup, referred as the non-cardiac

subgroup, consisted of 50 patients who did suffer from ap-

nea but not from any of the aforementioned comorbidities.

These patients were matched one-to-one to the patients in

the cardiac subgroup according to age, gender, Body Mass

Index (BMI) and smoking habits.

From each PSG recording, the single-lead ECG (lead-II)

signal was extracted together with the SpO2 and three res-

piratory signals. The respiratory signals corresponded to

the respiratory effort recorded around the thorax (Rth) and

abdomen (Rab) using inductive plethysmography and the

nasal airflow (Rn) recorded using a preassure sensor. All

signals were sampled at 500 Hz, and all apnea events were

annotated by a sleep specialist according to the AASM

2012 rules [8].

2.2. Pre-Processing

The three respiratory signals were first band-pass fil-

tered using a Butterworth filter with cutoff frequencies at

0.05 Hz and 1 Hz. After that, they were downsampled at 4

Hz. The ECG signals, on the other hand, were used to find

the location of the Rpeaks by means of the approach pre-

sented in [5]. Then, missed, false, and more importantly,

ectopic beats were corrected using the integral pulse fre-

quency modulation (IPFM) model as in [9]. The reason to

use this model is that many ectopic beats are expected in

the cardiac subgroup, which might interfere with the quan-

tification of the ANS modulation. As a result, the heart

rate variability signal (HRV) was extracted. This signal

was then resampled at 4 Hz and band-pass filtered as it

was done for the respiratory signals. The last signal was

the SpO2, which was only downsampled at 1 Hz.

2.3. Feature Extraction

The analysis of the different signals, namely, HRV, Rth,

Rab, Rn, and SpO2, was performed using a moving win-

dow approach with a window length of 60 s and an over-

lap of 50 s. From the power spectral density (PSD) of the

HRV and the respiratory signals, the power in the low fre-

quency (LF : 0.04 − 0.15 Hz) and in the high frequency

(HF : 0.15−m Hz) bands were extracted each 60 s, with

m = HR/2 and HR the mean heart rate in the segment.

The PSDs were computed using the Welch’s algorithm

with a Hamming window of 40 s, an overlap of 35 s, and

1024 points.

The SpO2 signal was processed using the same moving

window approach but in this case only the mean value was

used to characterize each segment.

The last feature was extracted from each ECG segment

of 60 s, and it corresponds to the signal quality indicator

(SQI) proposed in [10]. This indicator was used to de-
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Figure 1. Cardiorespiratory graph Gth constructed using

Rth. V = {LFhrv, HFhrv, SpO
2
, LFth, HFth}. Only 3

edges are indicated for illustration purposes.

tect contaminated segments that could potentially bias the

results. It ranges from 0 to 100 and the higher it is, the

“cleaner” the ECG segment.

To summarize, this feature extraction approach lead to

the derivation of 10 time series, sampled each 10 s:

• LF and HF powers of HRV: LFhrv and HFhrv

• LF and HF powers of Rth: LFth and HFth

• LF and HF powers of Rab: LFab and HFab

• LF and HF powers of Rn: LFn and HFn

• Mean SpO2

• SQI

2.4. The Cardiorespiratory Graph

A graph G = (V , E) consists of vertices V =
{vi}

N
i=1

and edges ei,j ∈ E , with ei,j the edge be-

tween vertices vi and vj , and each vertex representing

one of the N time series under investigation. In this

study, N = 5 and the vertices were defined as V =
{LFhrv, HFhrv, SpO

2
, LFresp, HFresp}, where LFresp

and HFresp were derived from one respiratory signal. As

a result, 3 graphs were analyzed, each one constructed with

a different respiratory signal. Figure 1 illustrates the car-

diorespiratory graph Gth constructed using Rth. The rea-

son for using only one respiratory signal per graph was to

avoid redundant information introduced by the high corre-

lation expected between the respiratory signals.

The cardiorespiratory graph was considered to be an

undirected graph, where each edge in the graph has a

weight determined by a similarity measure kij > 0 and

kij = kji. In fact, this weight indicates the strength

of the connection between vi and vj . Moreover, how

strongly a given vertex vi is connected to the other ver-

tices in the graph is quantified by its degree, defined as

degi =
∑N

j=1
kij . As a result, the degree matrix D of

the graph can be computed as a diagonal matrix with the

degrees deg
1
, . . . , deg

5
on the diagonal.

As in [7], the graph was analyzed using a moving win-

dow approach, where the topology of the graph remained

the same. Here, a window of 60 s was used to calculate

the weights and the degree matrix D. Then, a shift of 10

s was applied each time so that the evolution of the graph
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could be analyzed throughout the night. The weights were

computed using the Radial Basis Function defined as

kij = K(xi, xj) = exp

(

−
‖xi − xj‖

2

2

σ2

)

, (1)

with σ2 the kernel parameter, and xi and xj two seg-

ments of 60 s of the time series represented by the con-

nected vertices. As a result, kij can be seen as the ij-th

entry of the symmetric kernel matrix (i.e. similarity ma-

trix) Ω ∈ R
N×N , with Ωij = kij = K(xi, xj).

The selection of the kernel parameter σ2 was done based

on the approach presented in [7]. Here, all the kernel matri-

ces computed for each window of 60 s were concatenated

into a large matrix Ω̃ ∈ R
N×mN , with m the number of

segments (i.e. graphs) analyzed for one recording. This

was done for multiple values of σ2 in the range between

0.01 and 100. For each one of these values, the Shannon

entropy H of Ω̃ was computed and then, the σ2 for which

H was highest was selected as the “optimal” kernel param-

eter. This was repeated for each recording, so a collection

of 110 “optimal” σ2 values was obtained. After that, the

mean value was selected as the final kernel parameter for

the analysis of all recordings. The reason for using only

one value of σ2 for all recordings was to guarantee that

all graphs were contained in the same space, hence, they

could be comparable to each other.

Apart from calculating the weights, the kernel matrix Ω,

and the degree matrix D for each window, the overall con-

nectivity of the graph was computed as the average degree

δ(G) defined as δ(G) = 1

N

∑N

i=1
degi.

The δ(G) values and the degrees were then compared

among patient groups using the Kruskal-Wallis and multi-

comparison tests with Bonferroni correction and α = 0.05.

The first comparison was done using the full night record-

ings, and the mean δ(G) for the full night was computed

using only the clean segments. These clean segments cor-

responded to those with SQI > 50, since they were clas-

sified as clean by the algorithm proposed in [10].

The second comparison was done using the apnea

events. Figure 2 illustrates the selection of the segments

that were used to calculate the mean δ(G). Note that 7

graphs are considered per apnea since the moving window

approach used a window length of 60 s and a shift of 10 s.

For this test, all apneas were taken together and the mean

δ(G) corresponded to the mean connectivity around the

events.

3. Results and Discussion

The first step was to select the kernel parameter σ2 to

be used for all the experiments. After finding an “opti-

mal” value for each patient, the mean value was selected

for all the analysis. This corresponded to σ2 = 67.4, and

time
apnea

60 s

G  , δ (G)1 1

G  , δ (G)2 2

120 s

apnea
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Figure 2. Analysis of the connectivity around apneas.

The mean δ(G) was calculated using only the graphs con-

structed around the apneas using a window of 120 s.

no differences were found between the values obtained for

each patient group. For the control, cardiac, and non-

cardiac groups, these values were, respectively, 68.2±4.5,

66.7± 10.9, and 67.9± 6.3.

After selecting the kernel parameter, two experiments

were performed. First, the average degree δ(G) was cal-

culated for the whole night taking into account segments

with good quality. Results indicate that the values of δ(G)
decrease with a larger AHI. This can be observed in Fig-

ure 3, where it is clear that for increased values of AHI, the

connectivity of the graph is significantly lower when com-

pared to the control group (p < 0.01). This connectivity,

however, is not different for the cardiac group. Therefore,

apneas seem to have a stronger long-term effect on the in-

teractions between the signals. The reason to split the AHI

at 35 was to obtain a similar amount of patients for each

group, namely, 33 and 32 patients with 15 ≤AHI< 35,

and 17 and 18 patients with AHI≥ 35, for the cardiac and

the non-cardiac groups, respectively. The results presented

here were obtained using Rth but very similar results were

obtained with the other 2 respiratory signals.

In [4, 5], it was shown that the amount of informa-

tion transferred from respiratory to heart rate was reduced

around episodes of apnea. Hence, it is possible to think

that, the connectivity of the cardiorespiratory graph in the

full night appears to be lower due to the occurrence of mul-

tiple apnea events (i.e. higher AHI). The latter might have

a larger effect when averaging the values of δ(G) for the

full night. With this in mind, the second experiment was

performed, where only the graphs constructed around the

apnea events were considered. At this point, the average

degree of the graphs was calculated using the approach de-

picted in Figure 2. Results indicate that the connectivity of

the graph around apneas is significantly lower for the car-

diac group, with p = 0.01. This difference, however, was

not present when analyzing different AHIs. Hence, the ef-

fect of the cardiac comorbidity appears to be stronger dur-

ing apneas. No differentiation between the types of apneas

(e.g. apneas and hypopneas) was done, hence, future work

could focus on whether or not the effect on the connectiv-

ity of the graph is different for hypopneas. In addition, the
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control non-cardiac cardiac

*
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Figure 3. Mean δ(G) for the full night recordings using

only the clean segments. Significant differences are indi-

cated by *.

effect of the duration of the apneic event and the degree of

desaturation should also be investigated.

Apart from analysing the total connectivity of the graph,

the strength of each independent connection was also stud-

ied. This was done for different AHI values and for dif-

ferent patient populations. Results indicate that the con-

nections to the SpO2 vertex were weaker in the cardiac

group and this could be associated with the more severe

desaturations observed for this patient population [6]. In

fact, the lower connectivity in apnea patients might be the

result of a weaker control mechanism that allows the au-

tonomic nervous system to react to the occurrence of an

apnea episode. As a result, more severe desaturations can

occur and a stronger impact in the well-functioning of the

heart could take place.

4. Conclusions

The results presented in this study suggest that the inter-

actions between the cardiorespiratory signals are affected

by the presence of apnea. Furthermore, the response of

the cardiorespiratory system to apnea episodes seems to

be compromised by apnea associated comorbidities. With

this in mind, the quantification of these interactions could

be used to better phenotype apnea patients. As a result, an

improved diagnosis and treatment could be achieved.
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