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Abstract 

Most electrocardiogram (ECG) signal quality 

assessment algorithms focus on a two- or multi-level 

classification. However, it could be argued that signal 

quality would more naturally occupy a continuum of 

quality values. Therefore, in previous work we created a 

continuous quality assessment algorithm based on the 

autocorrelation function (ACF). This paper evaluates this 

algorithm on a simulated dataset with five noise levels and 

known signal-to-noise ratios (SNR).  

The simulated data was created by selecting clean ECG 

segments of a polysomnographic dataset with an in-house 

quality algorithm, and adding calibrated amounts of two 

types of realistic ECG noise from the MIT-BIH Noise 

Stress Test Database (NSTDB). Both Electrode Motion 

(EM) and Movement Artefacts (MA) were considered.  

Using only three features and a binary training set, we 

have shown significant quality decreases per noise level 

for both types of added noise. Despite this finding, also 

significant intra-level differences were observed, 

indicating a change in response according to the type of 

noise. Adding other features might help to converge the 

quality scores.  

By presenting the users with a continuous quality score, 

they are given the possibility to define the preferred level 

of quality according to the study objective.   

 

 

1. Introduction 

Electrocardiogram (ECG) recordings are often 

contaminated with large amounts of noise and artefacts [1]. 

The presence of these contaminating factors could reduce 

the diagnostic capabilities of the ECG and degrade the 

performance of the most sophisticated signal processing 

algorithms [2]. Since these algorithms are usually designed 

to operate on signals whose quality has already been 

verified by an expert, an indication of the signal quality is 

necessary [3]. 

Most of the earlier work on quality indication is 

restricted to binary classification: clean or contaminated, 

acceptable or unacceptable. However, the acceptance 

stringency of this binary classification might vary 

significantly according to the study objective [3]. For 

instance, heart rate variability studies require a low 

acceptance stringency, since only QRS-complexes need to 

be accurately detected, while studies that investigate 

waveform morphology changes require a high acceptance 

stringency. 

As an improvement on the binary classification, some 

authors proposed to use multiple discrete noise levels. 

Vaglia et al. defined three signal quality bins: low, average 

and good quality. Signals in the low-quality bin will need 

manual reading, signals with average quality will need 

cardiologist over-read and good quality signals will not 

need any further review process [4]. In more recent work, 

Li et al. presented a five level signal quality classification 

algorithm: clean, minor noise, moderate noise, severe 

noise and extreme noise [5]. 

Redmond et al. stated that while discrete quality labels 

facilitate the creation of an expert labeled gold standard 

training set, it could be argued that signal quality would 

more naturally occupy a continuum of quality values [3]. 

Therefore, starting from a previously proposed binary 

quality indication algorithm, based on the autocorrelation 

function (ACF) and a RUSBoost classifier, we suggested 

to use the weighed sum of the posterior probability of the 

clean class as a continuous indication of the signal quality 

[6]. 

In this paper, the mentioned continuous signal quality 

indicator is evaluated on a simulated dataset with five noise 

levels and known signal-to-noise ratios (SNR). 
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2. Materials & Methods 

2.1.  Clean data 

The quality assessment algorithm was evaluated on a 

large subset of the ECG signals of a polysomnographic 

dataset [7]. Briefly, the dataset consists of 16 single-lead 

(lead II) ECG recordings, originating from 16 different 

patients. A total amount of 152 hours and 12 minutes of 

signal was acquired with a sampling frequency of 200 Hz. 

Since no ECG signal quality annotations of this dataset 

exists, an in-house quality estimation algorithm was 

applied to locate the cleanest epochs [7]. The recordings 

were firstly segmented in 10 seconds epochs and hereafter 

the cleanest epochs were selected. Stringent thresholds 

were used to ensure the validity of this approach. This 

resulted in 49313 clean 10 seconds epochs. 

 

2.2 Additive noise 

The PhysioNet noise stress test database (NSTDB) was 

used to generate noisy records [8]. The database contains 

samples of three types of noise: electrode motion (EM), 

baseline wander (BW) and muscle artefact (MA). Only EM 

and MA were considered, since baseline wander is usually 

not a cause for erroneous R-peak detection. 

Like the clean recordings, the noisy recordings were 

segmented in epochs of 10 seconds. For each clean ECG 

epoch a noisy epoch was randomly selected and a 

calibrated amount of this noise epoch was added to the 

clean epoch.  

 

2.3.  Signal noise levels 

The same signal noise levels as described in [5] were 

used.  

- Level 0 (clean): An outstanding recording with no 

visible noise or artefact 

- Level 1 (minor noise): A good recording with transient 

artefact or low-level noise that does not interfere with 

interpretation or recognition of P, T or atrial flutter waves 

- Level 2 (moderate noise): An adequate recording that  

can be interpreted with confidence despite visible and 

obvious flaws, but does not interfere with the identification 

of QRS complexes or ventricular flutter waves 

- Level 3 (severe noise): A poor recording that may be 

interpretable with difficulty. Noise interferes with QRS or 

ventricular flutter recognition 

- Level 4 (extreme noise): An unacceptably poor 

recording that cannot be interpreted with confidence 

because of significant technical flaws.  

The SNR of the resulting signals was defined as 

described in [9] and the different SNR levels are shown in 

Table 1. 

 

Table 1: The required SNR for each type of added noise to 

create the same noise level. Adapted from Li et al. [5]. 

Noise level Description of noise SNR levels (dB) 

  EM MA 
Level 1 Minor 6 12 

Level 2 Moderate 0 6 

Level 3 Severe -6 0 

Level 4 Extreme -12 -6 

 

Figure 1: The diagnostic quality of the ECG signal 

decreases when the level of electrode motion (EM) noise 

increases. 

This procedure resulted in a total of 98626 segments for 

each noise level. An example of a random EM noise 

sample and the different noise levels is displayed in Figure 

1. 

2.3. ECG quality assessment  

The ECG signal quality assessment tool based on the 

weighed sum of the posterior probability of a RUSBoost 

classifier was previously described in [6]. Briefly, it 

consists of three steps: pre-processing, feature extraction 

and quality indication.  

In the pre-processing step the easy-to-remove artefacts, 

such as baseline wander and high-frequency noise, are 

removed by means of a zero-phase, band pass Butterworth 

filter with cut-off frequencies at 1 Hz and 40 Hz. This filter 

effectively removes the aforementioned artefacts and 
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preserves the morphological structure of the ECG. 

The feature extraction step consists of three smaller 

steps: signal segmentation, signal characterization and 

feature extraction. First, the 10 seconds signal is 

segmented in epochs of five seconds with an overlap of 

80%. This results in six epochs per signal. Hereafter, each 

epoch is characterized by its autocorrelation function 

(ACF). This characterization facilitates the separation of 

clean and contaminated segments, since the ACF of a clean 

quasiperiodic signal is significantly different from a 

contaminated one [7]. Finally, three features are derived 

from the entire set of ACFs: the first (local) minimum, the 

maximum amplitude at 35ms and a similarity feature.  

These features, all calculated from the ACF, are fed to a 

RUSBoost classifier [10] which is trained on a binary class 

training set. The continuous quality score is generated by 

performing a weighed sum of the posterior probability of 

the clean class.  

A more elaborate explanation can be found in [6]. 

 

3. Results and Discussion 

A clean dataset was created by applying an in-house 

quality estimation algorithm on the ECG signals of a 

polysomnographic dataset. An overall quality level of 

100% (25th percentile=100% and 75th percentile=100%) 

was obtained for these clean signals (Figure 2). This 

indicates that both quality indication algorithms define 

clean signals the same way and that, most probably, the 

selected signals were indeed noise free.  

Two types of realistic ECG noise, EM and MA, at 

different SNR levels from the NSTDB were added to 

create a simulated dataset. The quality values of the EM 

and MA noise significantly decreased with the increasing 

noise levels (p<0.01). Due to the non-normality, which was 

tested with a Lilliefors test, the quality values were 

compared by a Kruskal-Wallis test.  

Additionally, the inter-noise quality values also differed 

significantly (p<0.01). This indicates that the quality 

indication algorithm responds differently according to the 

type of noise. Although the SNR is defined in a way that 

the noise level is the same, the shape of the noise types will 

remain different. The algorithm uses only three features 

which are derived from the ACF and is thus heavily 

influenced by the shape of the noise. Adding other features 

might help to converge the quality scores.  

When contaminated with EM noise, the quality values 

do not converge to 0% for the most heavily contaminated 

segments. This might be due to the similar morphology of 

the EM noise and the QRS complex. A comparable issue 

was reported by Li et al. when testing their signal quality 

indices [11].  

The quality values of the signals contaminated with MA 

noise, tend to remain close to 100% until noise level 3 is 

reached. This could have two possible explanations. 

 

 

Figure 2: The quality of the EM and MA noise both 

significantly decrease, to a different extent, with the 

increasing noise level. The boundaries of the gray area 

indicate the 25th and 75th percentiles, and the solid line the 

median. 

Firstly, the signal quality indication algorithm was 

intended for HRV analysis. Therefore the labelling of the 

training dataset was solely focused on accurate R-peak 

detection. Moody et al. have shown that MA can be 

tolerated at much higher levels than EM artefacts, hence 

higher quality scores could be expected for MA corrupted 

signals. 

Secondly, it might be the result of the pre-processing of 

the signal. Before the features are extracted, the signal is 

band pass filtered between 1 Hz and 40 Hz. Thereby the 

low- and high-frequency noise is removed. Since MA 

noise generally consists of high-frequency signals it is 

possible that most of the added noise is filtered. This 

consideration was tested by performing only a high-pass 

filter instead of a band pass filter. The overall signal quality 

at level 2 and 3 significantly decreased.  

The signal quality indicator evaluated in this study was 

trained on a dataset which mostly consisted of normal sinus 
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rhythm. Furthermore, this is also the dominant rhythm of 

the dataset used in this study. Previous studies have shown 

that signal quality classification algorithms experience a 

reduction in performance on an arrhythmia database when 

it was not explicitly retrained using signals containing 

arrhythmia episodes [5], [9]. Therefore, in order to further 

validate the algorithm, it should be tested on an arrhythmia 

database. 

 

4. Conclusion 

Li et al. stated that a continuous quality annotation is 

hard to validate since it is difficult to create a test dataset 

[5]. In this paper we tried to circumvent this issue by 

evaluating a previously developed ECG signal quality 

indication tool on a simulated dataset with five noise levels 

and known SNR’s. Despite the simplicity of the algorithm, 

only three features were used, we have shown significant 

quality decreases per noise level for both types of added 

noise.  

By presenting the users with a continuous quality score, 

they are given the possibility to define the preferred level 

of quality according to the study objective.   
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