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Abstract 

This study did investigate how well a moving dipole 
approximation of the electrical activity of the heart can 
contribute in differentiating strict left bundle branch 
block (sLBBB) from other, unspecified depolarization 
abnormalities. 

561 ECGs with given sLBBB diagnoses from the LBBB 
initiative of the ISCE 2018 meeting were used for 
applying a moving dipole model to the individual heart 
beats, providing the 3-dimensional time courses of the 
dipole’s position and momentum. The dipole position and 
momentum traces plus sex and QRS width were used as 
input for a logistic regression model. The classification 
performances of the various input dataset were compared 
by calculating the area under the receiver operating 
characteristic curve (AUC) and through a two-fold cross 
validation approach. 

Best classification performance was observed using 10 
ms time segments including 9 dipole position and 12 
dipole momentum parameters with average cross 
validation AUC value of 0.920 (95% CI [0.896; 0.945]). 

The moving dipole analysis based on the standard 12-
lead ECG provides new and physiologically relevant 
information about the location of the electrical activity 
during depolarization, which may help in improving the 
assessment of depolarization abnormalities. 

1. Introduction 

2011, Strauss et al [1] proposed stricter criteria for 
complete left bundle branch block diagnosis with the 
purpose to identify subjects that mostly benefit for 
cardiac resynchronization therapy (CRT). Besides longer 
QRS duration (≥140 ms for men and ≥130 ms for women) 
and QS- or rS-configuration in the leads V1 and V2, mid-
QRS notching or slurring in at least 2 contiguous leads 
was requested to meet sLBBB criteria. Visual assessment 
of the sLBBB criteria using the standard 12-lead ECG 
may be subjective. Thus, automated algorithms for 
identifying sLBBB may improve CRT. 

This study aims in evaluating to which extend sLBBB 

conditions can be derived from a moving dipole 
approximation of the electrical activity of the heart, 
omitting the assessment of specific waveform patterns 
like notching and slurring.  

2. Data 

This study uses the ECGs that have been published as 
part of the LBBB initiative of the ISCE 2018 meeting [2]. 
The ECGs are 10-second excerpts, extracted from 12-lead 
Holter recordings with Mason-Likar lead configuration, 
captured before CRT implantation in the MADIT-CRT 
trial [3]. All ECGs have been adjudicated for strict LBBB 
presence according to [1]. The ECGs were split in a 
training dataset A and in a test dataset B of about equal 
size. Each dataset also contained 20 duplicate ECGs for 
testing method reproducibility. Omitting the duplicate 
ECGs, the dataset consisted of 561 ECGs with 
annotations as shown in table 1. 

Table 1. ECG datasets 

Dataset  sLBBB Not sLBBB ∑ 
A (training) 160 120 280 
B (test) 142 139 281 
Male 188 215 403 
Female 114 44 158 

3. Moving Dipole Analysis 

The moving dipole model describes the electrical 
activity of the heart in terms of a single, time varying 
dipole with momentum �(�) at position �(�). The 
electrical activity is measured at the body surface by the 8 
leads I, II, V1, to V6. At every time instance ��, a 
measurement ��(��)  at lead L may be considered as 
scalar product of the dipole momentum with the 
appropriate lead vector. The lead vector for a given pair 
of electrodes depends on the electrode positions, the time 
varying position of the dipole itself, as well as on 
properties of the volume conductor (body geometry, 
tissue conductivities). For an infinite, homogeneous 
volume conductor with conductivity � the potential Φ of 
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a dipole diminishes with distance r from its position as 

Φ(r) ≅ 1
����  (see [4]).  

For a pair of electrodes �� and �� at position �� and ��
measuring the potential difference Φ���� − Φ(��), the 

corresponding lead vector ��,�(�) is: 

��,�(�) =
�� − �(�)

���� − �(�)�
� −

�� − �(�)

�‖�� − �(�)‖�
(1)

For an inhomogeneous and finite thorax, formula (1) 
may be adjusted by allowing different conductivities 
related to the individual electrodes and by (slight) 
deviation of the effective electrode positions from the 
physical positions. A lead measurement ��,�(��) may be 
predicted as: 

���,�(��) = ��,�(��) ⋅ �(��) (2)
In this study, the equivalent moving dipole generator 

was estimated by minimizing the expression: 

� ‖�(��) −��(��)‖
� + Φ�(�)

�

���
+ Φ�(�)

+ Φ�(�, �̃) + Φ�(�, ��) ⟶���
(3)

where � is the number of sampling points, �(��) and 
��(��) the measurement vector respectively the prediction 
vector of all leads at time instance ��. Φ�(�,��) denotes 

some regularizer function related to the model parameter 
� and its optional prior value ��. Further details are given 
in [5]. 

For each ECG, the moving dipole model was fitted to 
the heart beats lying in the central 5 seconds, ending up in 
2403 analyzed beats. For each analyzed beat, the average 
moving dipole position and momentum within the QRS 
complexes were calculated in time slices of length 160, 
80, 40, 20, and 10ms between the QRS onset and the next 
160ms. The spatial X, Y, and Z components of these 
averages were used as input for the following 
classification approach, as well as the QRS width, which 
was determined per beat by a proprietary ECG analysis 
system. 

4. Classification 

To differentiate between sLBBB and non-sLBBB, a 
logistic regression approach [6] was applied using various 
subsets of the position and momentum data from the time 
slices, plus sex and the QRS width. Significant 
classification parameters were identified using a genetic 
algorithm by optimizing the Bayesian information 
criterion. The classification performance for the various 
input subsets was compared through the area under 
receiver operating characteristic (AUC), as well as 
through a 2-fold cross validation approach with 1000 
randomly chosen ECG subsets, mirroring the conditions 
of the learning/test datasets in the ISCE LBBB challenge. 

5.  Results 

Figure 1 displays the performances of various input 
subsets for separating sLBBB from non-sLBBB 
conditions. Best separation was observed for M6, 
consisting of the input parameter sex, QRS width, as well 
as 9 position and 12 momentum parameters from the 
10ms time slices. Fitting M6 to the training dataset and 
predicting sLBBB on the test dataset resulted in the 
performance measures displayed in table 2. Sensitivity, 
specificity, and accuracy were all in the order of 0.85. 

Figure 1. Classification performance for 8 different input 
models, each of them using sex and QRS width as input 
parameter. M1: Just sex + QRS width; M2: 160ms slices; 
M3: 80ms time slices; M4: 40ms time slices; M5: 20ms 
time slices; M6: 10ms time slices; M7: 10ms time slices, 
momentum only; M8: 10ms time slices, position only. 
Red: Fit to all data; Blue: Cross validation. 

Table 2. Contingency table for model M6, fit to training 
dataset and prediction on test dataset. 

Annotation 
sLBBB Not sLBBB 

Prediction 
sLBBB 122 22 0.847 
Not sLBBB 20 117 0.854 

0.859 0.842 0.851 

Figure 2 provides details about the classification 
performance of M6, showing an AUC value of 0.946 for 
fitting the M6 to all data with 95% confidence interval 
[0.938; 0.955]. Cross validation of M6 resulted in an 
average AUC value of 0.920 with 95% confidence 
interval [0.896; 0.945]. 

As depicted in figure 1, adding moving dipole signal 
data to sex and QRS width increased the classification 
performance from AUC = 0.82 to values larger than 0.90. 
Smaller time slices performed better than larger time 
slices. Using the 10ms time slices with momentum data 
only (model M7) performed slightly better than using 
position data only (model M8). The significant moving 
dipole parameters are depicted in figure 3. 
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Figure 2. Classification performance for model M6.  
Blue: Fit to all data. Green: Fit to training data, prediction 
on test data. Grey: Cross validation. 

Figure 3. Significant moving dipole parameters using 
10ms time slices. Top: Model M8, position data only.  
Bottom: Model M7, momentum data only. 

6.  Discussion 

The classification described here was based on the 
given sLBBB annotations, which depend on the QRS 
duration measurement, the visual determination of QS- or 
rS-configurations in leads V1 and V2, and on the visual 
determination of mid-QRS notching or slurring. This 
sLBBB assessment might have been affected by 
subjective decisions, and may not absolutely reflect true 
physiological LBBB conditions.  

QS- and rS-configurations, as well as notching 
conditions were not explicitly modelled here. The moving 
dipole description of the QRS signal encodes these 
characteristics to some extent, as indicated by the 
classification performance gain when adding the moving 
dipole data to sex and the QRS width. 

The moving dipole’s position trajectory is new 
information that cannot be visually deducted from the 
standard 12-lead ECG. Notably, this position information 
improves sLBBB classification in addition to the pure 
momentum information (compare models M8, M7, and 
M6 in figure 1). 

Under complete LBBB, depolarization starts in the 
right ventricle, passes the ventricular septum, and 
propagates through the left ventricle [1]. Thus, 
depolarization under LBBB is mainly characterized by its 
location trajectory. The classical LBBB criteria, as well as 
the strict LBBB criteria, derive location information 
indirectly from the heart’s dipole momentum vector. The 
moving dipole model presented here, however, produces 
explicit information about the excitation location 
trajectory as depicted in figure 4: The panels A and B 
display 140ms long moving dipole trajectories of the 
ventricular depolarization from two male subjects, both 
with 150ms broad QRS complexes and rS configuration 
in V1 and V2. In panel A (displaying an ECG with 
sLBBB annotation), the center of excitation immediately 
moves to the body’s right and front side, and then 
progresses to the left side. This may be considered as the 
expected excitation process for complete LBBB. In panel 
B, the center of excitation starts moving to the body’s left 
and front side, turns back to the heart’s center, and 
proceeds with a turn to the very left and front side, finally 
returning to the center of the heart. This ECG was not 
annotated as sLBBB because only one notch was 
identified in lead I while all other sLBBB criteria were 
fulfilled. However, the moving dipole estimate unveils 
more pronounced heterogeneities in the trajectories of the 
dipole position and the dipole momentum compared to A, 
what may better reflect excitation conditions than pure 
standard 12-lead ECG based waveform properties. 

Of note: One might expect that the path of the moving 
dipole’s position should be in line with the direction of 
the dipole vector. The moving dipole approximation 
shows that this is usually not the case. Moreover, the 
dipole momentum typically is rather orthogonal to the 
moving dipole’s position trajectory. This observation was 
also reported by Vito Starc (personal communication, 
CinC 2018) who applied a similar moving dipole 
approach to healthy subjects [7]. A reason for this 
misalignment may relate to the fact that the moving 
dipole’s position and momentum are calculated as a 
spatial integral over the whole excitation wave front, 
while the excitation propagation on the cellular level may 
be determined by the local dipole orientation and by 
myocardial structures. 
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Figure 4. Moving dipole of single QRS complexes.  
A: sLBBB; B: Non-sLBBB. Left: 12-lead ECG. Right: 
Moving dipole at QRS onset plus 140ms. Blue lines: 
Dipole position. Red lines: Dipole momentum. 
Coordinate needles: Red: Back to front. Green: Right to 
left. Blue: Foot to head. 

The moving dipole analysis did identify the expected 
shift of the early excitation path towards the right 
ventricle under LBBB for the entire population as shown 
in figure 5.  

Figure 5. Distribution of the moving dipole position 
within the QRS complex along the main axis (see text).  
Top: male. Bottom: female.  
Red: sLBBB. Blue: non-sLBBB. 

The largest difference of the dipole location between 
sLBBB and non-sLBBB was observed when viewing 
along a main axis pointing from the body’s right, front, 
top side to left, back, bottom. The average dipole position 
between 10 and 60ms after Q was more negative for 
sLBBB (red bars) compared to non-sLBBB (blue bars), 

and clearly more positive at the end of depolarization. 
This difference in the moving dipole’s position between 
sLBBB and non-sLBBB was less pronounced for female 
than for male subjects. 

7.  Conclusion 

sLBBB ECGs could be separated from non-sLBBB 
ECGs with an accuracy of 85%. Significant parameters 
for sLBBB classification were sex, QRS width, and 
components from both, position and momentum, of the 
moving dipole. 

The moving dipole analysis provides physiologically 
relevant information about the excitation process that is 
not available by standard ECG assessment. Most notably, 
the moving dipole analysis did unveil a systematic shift of 
the early excitation path under sLBBB conditions to the 
body’s front and right side as expected for a delayed 
excitation of the left ventricle. 

The moving dipole analysis may contribute to an 
enhanced assessment of depolarization abnormalities 
even beyond LBBB. 
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