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Abstract

Detrended fluctuation analysis is a popular method for
studying fractal scaling properties in time series. The met-
hod has been successfully employed in studying heart rate
variability and discovering distinct scaling properties in
different pathological conditions. Traditionally the ana-
lysis has been performed by extracting two scaling expo-
nents from linear fits, for short- and long-range correlati-
ons respectively. The extent of these ranges is subjective
and the linear two-range model potentially disregards ad-
ditional information present in the data.

Here we present a method based on the Kalman smoot-
her for obtaining a whole spectrum of scaling exponents
as a function of the scale. Additionally, we present an op-
timization scheme to obtain data-adaptive segmentation of
the fluctuation function into approximately linear regimes.
The methods are parameter-free and resistant to statistical
noise in the fluctutation function.

We employ the methods in the analysis of the heart rate
variability of patients with different heart conditions. The
methods enhance the classification of these conditions, re-
vealing more complex structure in the scaling exponents
beyond the two-range model.

1. Introduction

The relationship between the autonomic nervous system
and cardiovascular health has long been recognized. Their
compounded effect is manifested in heart rate variability
(HRV), and alterations in HRV may be indicative of vari-
ous cardiovascular diseases [1]. Detrended fluctuation ana-
lysis (DFA), originally developed for studying long range
correlations in DNA sequences [2], has been a popular
method for studying self-affinity in signals. By compu-
ting the mean fluctuations F'(s) around a trend at multi-
ple scales s, DFA is applied to assess power law scaling
F(s) ox s* described by the scaling exponent .

In the context of HRV, DFA is traditionally performed
on the signal consisting of interbeat intervals, and the sca-
ling exponent is determined by linear regression on a log-
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log plot of the fluctuation function F'(s). Conventionally
the linear regression is applied separately to two regimes
to obtain short- and long-range scaling exponents [3]. This
approach has been criticized as over-simplification, and al-
ternative methods have been proposed [4, 5].

We propose two methods to complement the analysis.
We present a method for obtaining a smooth spectrum of
scaling exponents as a function of the scale, and an op-
timization scheme for determining a segmentation of the
fluctuation function into approximately linear regimes.

2. Detrended fluctuation analysis

In the standard DFA formulation [3], integrated time se-
ries is divided into N4 non-overlapping windows of size
s, from which the local trend is calculated in each win-
dow w by a least squares fit of a low order polynomial.
The squared fluctuations FS2 w 1 each window are defined
as the mean squared differences from the local trend. We
compute an error estimate for the fluctuation function as
follows.

Let us and €4 denote the mean and its standard error, re-
spectively, of the squared fluctuations over all windows of
size s. The fluctuation function F'(s) and its error estimate
AF(s) are then given by

F(s) = v/ps;

€
2 /ls

We denote their logarithmic counterparts by tildes, F(3)
and AF'(5), respectively.

AF(s) =

(D

3. Kalman filter and smoother

Let us consider a linear probabilistic state space model
of a system, described by its hidden state x;, € R™ and
yielding the measurement y,, € R™ at the step k, descri-
bed by the equations

T =Ap_1®R—1 +qp_ 2
Yy, = Hipxp + 75 (3)

where Aj,_; € R™*™ and H, € R™*" are the state tran-
sition and measurement model matrices, respectively. The
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system is disturbed by process noise q;,_; ~ N (0, Qj_1)
and measurement noise r; ~ AN (0,Ry), modeled by
zero mean Gaussian noise with covariance matrices
Qk,1 € R™*™ and Ry € R™*™,

The Kalman filter [6] provides a recursive closed-form
minimum-mean-squared error solution for the posterior fil-
tering distributions p(xk|y,.,) = N(my, Py), given all
the measurements up to the current step k. Similarly, the
Kalman smoother [7] allows the computation of the smoo-
thing distributions p(xy|y,..) = N(m;,P3}), that take
into account all the T" measurements to provide an esti-
mate for the state of the system at the step k& < T'. The
smoothing distributions are calculated from the filtering
distribution means my, and covariances P by backwards
recursion. For a modern exposition about the subject, see,
e.g., Ref. [8].

The scaling exponent a(s) is estimated from the loga-
rithmically transformed quantities. The dynamic model
applied in this paper assumes that the exponent remains ap-
proximately constant between adjacent window sizes, ex-
cept for tiny perturbations derived from the data. The hid-
den state x;, to be estimated then consists of the observed
fluctuation function values and its derivative, which cor-
responds to the scaling exponent: x; = [ﬁ’ v ()] ’
Here 5;, are the utilized logarithmic DFA window sizes in
ascending order and F}, = F'(5;). The state transition and
measurement model matrices are then

o 1 H=[1 0], @

where hy, = 81 — 8 is the forward difference of the
window size at k. The error estimate of the fluctuation
function is readily utilized as the measurement noise cova-
riance by Ry, = [AF ()] ?_ which is now simply a scalar.

The scaling exponent is gently perturbed by the process
noise, allowing it to vary as a function of the window size.
The noise covariance is estimated by taking a weighted
sample variance of the finite difference approximation [9]
of the logarithmic fluctuation function derivative. The de-
rivative is estimated at each window size § by

B B+ (B2, -0 ) Be— 03 By
" hie_ b, (P, + hi_)

where hp, = 3§, — §i_; are the backwards differen-
ces. The boundaries are considered by assuming that the
function continues linearly. The uncertainty AFj, in the
fluctuation function is propagated through this expression
to obtain squared error estimates AF}2 for these derivati-
ves.

The weighted sample variance 62 of the derivatives is
computed with the weights taken to be inversely proporti-
onal to these squared error estimates. This variance estima-
tes the magnitude of the nudges that the scaling exponent

. )

R

experiences between logarithmic window sizes, leading to
the following process noise covariance:

In, in?
— 523k 20y |
Q=0 [;ha h}

-+

(6)

The prior distribution A (1, Py) is estimated from the
first data points, with F and F} as the mean and the squa-
res of their error estimates as the covariance.

4. Integer linear programming

Let us consider the problem of optimally segmenting the
logarithmic fluctuation function F} into approximately li-
near regimes. First we compute all the possible n linear
regression fits to the fluctuation function that cover some
desired minimum number of different window sizes. The
optimal segmentation is then sought by solving the follo-
wing linear programming problem

arg majn c'x; ceR™; x e {0,1}", @)
where the components x; of the binary vector x indicate
whether the ¢-th fit is utilized in the optimal segmentation.
The components c; of the coefficient vector c¢ are the resi-
dual sum of squares RSS; of the linear regression fits.

For expressing the optimization constraints we intro-
duce the auxiliary variables a;, defined to be equal to
unity if the ¢-th fit covers the k-th window size and zero
otherwise. The constraints are then given by the following
equations

iaikzl; il'z:N’ 3
i=1 i=1

where the former relations ensure that each point in the
fluctuation function is covered by exactly one linear fit,
and the latter relation ensures that the solution consists of
the desired number of linear fits N. The problem is then
readily solved by any existing integer linear programming
suite.

Choosing an optimal value for the number of linear seg-
ments, N, is a partial and subjective decision. The appro-
ach taken here proceeds as follows. Let RSS(N) denote
the total residual sum of squares of the optimal segmen-
tation with IV segments. This residual is trivially reduced
by increasing the number of segments. We seek a solution
that consists of as few segments as admissible for equita-
ble segmentation. Therefore, we consider the desirability
D(N) o< 1/[N-RSS(N)] of a solution to be inversely pro-
portional to the number of segments and the total residual
sum of squares. The solution is optimal when it maximizes
this quantity.

This optimization scheme may be performed separately
for each fluctuation function or simultaneously to a group
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of fluctuation functions, provided that they all have been
calculated at compatible window sizes. In the latter case
the residual sum of squares RSS;; of the i-th fit in the j-
th fluctuation function are summed over all the fluctuation
functions when computing the coefficients c;.

5. Data and methods

The analysis is performed on the publicly available re-
sources of PhysioBank [10], utilizing the following data-
bases: Normal Sinus Rhythm RR Interval Database, The
Long-Term ST Database, The Long-Term AF Database,
Congestive Heart Failure RR Interval Database, and The
BIDMC Congestive Heart Failure Database.

Distinguishing intrinsic variations in the heart rate from
those induced by extrinsic influences in long term recor-
dings may be perplexing, resulting in unknown trends in
the data. While DFA is successful in detrending simple
long-term trends, its ability to cope with complex nonli-
near trends is disputed [11]. Therefore the analysis is ad-
ditionally performed by explicitly removing a trend deter-
mined by the local median in a moving window of 101
beats wide. In both cases DFA is performed with linear
detrending in 45 logarithmically distributed window sizes
of 5-200 beats.

The scaling exponent « is determined from the fluctua-
tion functions with three methods: the traditional linear fits
in short (5—16 beats) and long (16—64 beats) range regimes,
the optimal linear segmentation applied to the whole data-
set at once, and the alpha spectra obtained with the Kalman
smoother. These scaling exponents are then utilized as fe-
atures in the classification task of identifying the different
pathological conditions. The classification is performed by
various algorithms available in the scikit-learn Python mo-
dule [12]. Hyperparameters are optimized with a simple
grid search.

6. Results

The Kalman smoother is found to be capable of obtai-
ning robust estimates for the scaling exponent, even in the
presence of moderate noise in the fluctuation functions.
This is demonstrated in Fig. 1, where we observe that the
alpha spectrum from the noisy fluctuation function follows
very closely the spectrum from the smoother fluctuation
function.

Performing the optimal linear segmentation on the
whole data set reveals four segments in the following ran-
ges: 5-12, 13-32, 35-81, and 87-200 beats. The scaling
exponents from the explicitly detrended data are illustra-
ted in Fig. 2 for the different pathological conditions. The
results suggest that two scaling exponents may be insuffi-
cient for adequately describing the scaling behavior. Yet
even with the more detailed methods the average scaling
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Figure 1.  Performance of the Kalman smoother on

noisy fluctuation function (blue dots with error bars). The
smooth fluctuation function (dashed) is obtained by utili-
zing overlapping windows in its calculation. The corre-
sponding alpha spectra are also shown with their error es-
timates.

behavior is very similar in healthy individuals and in those
suffering from ST episodes.

Classification results with leave-one-out cross-validation
are shown in Fig. 3. The more detailed picture depicted
by the new methods results in moderately better classifica-
tion performance over the traditional two-range model, for
both multiclass and binary classification tasks. Particularly
in the binary classification of healthy versus AF and CHF,
the misclassification rates are reduced by approximately
40 %. However, ST episodes cannot be reliably diagnosed
from the overall scaling behavior of long-term recordings.
Results from the optimized linear segmentation are omit-
ted, as they are already very similar to the results obtained
with the smooth alpha spectra.

Curiously, the data detrended by the local median yields
better classification results, despite the detrending remo-
ving long-range correlations. However, the classes become
more distinct in the as-regime, which may be caused by
the detrending removing spurious correlations arising from
extrinsic trends.

7. Conclusions

We have introduced methods for robustly determining
the DFA scaling exponent, and a spectrum of exponents,
from noisy fluctuation functions in a parameter-free man-
ner. The methods have been tested by classifying different
heart conditions according to the scaling exponents of in-
terbeat intervals. The results support the hypothesis that
the traditional two-range model for the scaling exponents
can be insufficient. Furthermore, the significance of extrin-
sic trends in the heart rate variability may warrant further
research. The presented methods enhance the classifica-
tion of heart rate data covering different conditions, which
could open up a path into predictive cardiological tools.
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Figure 2. (a) The Kalman smoother estimates for the mean scaling exponents and their 95 % confidence intervals. Box
plots of the scaling exponents for the optimal linear segmentation (b) and the traditional short- and long-range regimes (c).
The numbers denote the fitting range in beats for the linear regression.
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Figure 3. Confusion matrices of the classification task with support vector machines for the traditional short- and long-
range alphas (upper) and for the Kalman smoother alpha spectra (lower) on the detrended data.
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